Interconnected computers and software systems have become an indispensable part of people's lives, therefore software quality research is becoming more and more important. There have been multiple attempts to synthesize knowledge gained in software quality research, however, they were focused mainly on single aspects of software quality and not to structure the knowledge in a holistic way. The aim of our study was to close this gap. The software quality publications were harvested from the Scopus bibliographic database. The metadata was exported first to CRexlporer, which was employed to identify historical roots, and next to VOSViewer, which was used as a part of the synthetic content analysis. In our study we defined synthetic context analysis as a triangulation of bibliometrics and content analysis. Our search resulted in 14451 publications. The performance bibliometric study showed that the production of research publications relating to software quality is currently following an exponential growth trend and that the software quality research community is growing. The most productive country was the United States and the most productive Institution The Florida Atlantic University. The synthetic content analysis revealed that the published knowledge can be structured into 10 themes, the most important being the themes regarding software quality improvement with enhancing software engineering, advanced software testing, and improved defect and fault prediction with machine learning and data mining. According to the analysis of the hot topics, it seems that future research will be directed into developing and using a full specter of new artificial intelligence tools (not just machine learning and data mining) and focusing on how to assure software quality in agile development paradigms.
翻译:相互关联的计算机和软件系统已成为人们生活不可缺少的组成部分,因此,软件质量研究越来越重要,因此,软件质量研究越来越重要,在综合软件质量研究中获得的知识方面,已经多次尝试过综合知识,然而,这些尝试主要侧重于软件质量的单一方面,而不是以整体方式构建知识。我们的研究目的是缩小这一差距。软件质量出版物是从Scopus书库中提取的。元数据首先出口到Crixlporer,后者用来查明历史根源,而紧挨作为合成内容分析一部分的VOSReliver。在我们的研究中,我们把合成背景分析定义为对双光度和内容分析的三重验证。我们的搜索主要侧重于软件质量的单一方面,而不是以整体的方式构建知识。我们的研究显示,与软件质量有关的研究出版物的制作目前遵循了指数增长趋势,软件质量研究界正在增长。最有成效的国家是美国和最有生产力的机构佛罗里达大西洋大学。合成内容分析表明,已出版的知识可以分为10个主题,最重要的是,关于软件质量和内容分析的全方位性能改进,关于软件质量和内容分析的主题是改进的全方位性、改进了机器数据分析,并改进了机器研究、改进了机器研究、先进软件研究、改进了机器研究、改进了数据、改进了机器研究、改进了机器研究、改进了机器研究、改进了数据、改进了机器研究、改进了数据、改进了机器研究、改进了机器研究、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了研究、改进了数据、改进了数据、改进了研究、改进了研究、改进了研究、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了研究、改进了数据、改进了数据、改进了数据、改进了数据、改进了数据、改进了。