Spatial association measures for univariate static spatial data are widely used. When the data is in the form of a collection of spatial vectors with the same temporal domain of interest, we construct a measure of similarity between the regions' series, using Bergsma's correlation coefficient $\rho$. Due to the special properties of $\rho$, unlike other spatial association measures which test for spatial randomness, our statistic can account for spatial pairwise independence. We have derived the asymptotic behavior of our statistic under null (independence of the regions) and alternate cases (the regions are dependent). We explore the alternate scenario of spatial dependence further, using simulations for the SAR and SMA dependence models. Finally, we provide application to modelling and testing for the presence of spatial association in COVID-19 incidence data, by using our statistic on the residuals obtained after model fitting.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2020年3月16日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员