We consider the problem of fairly and efficiently matching agents to indivisible items, under capacity constraints. In this setting, we are given a set of categorized items. Each category has a capacity constraint (the same for all agents), that is an upper bound on the number of items an agent can get from each category. Our main result is a polynomial-time algorithm that solves the problem for two agents with additive utilities over the items. When each category contains items that are all goods (positively evaluated) or all chores (negatively evaluated) for each of the agents, our algorithm finds a feasible allocation of the items, which is both Pareto-optimal and envy-free up to one item. In the general case, when each item can be a good or a chore arbitrarily, our algorithm finds an allocation that is Pareto-optimal and envy-free up to one good and one chore.
翻译:我们考虑了在能力限制下将代理人与不可分割物品公平、高效地匹配的问题。在这个背景下,我们得到了一组分类物品。每个类别都存在能力限制(所有代理人都一样),即代理人可以从每一类别获得的物品数目的上限。我们的主要结果是一种多元时间算法,它解决了两个在物品上具有添加剂功能的代理人的问题。当每个类别都包含所有物品(积极评价)或每个代理人的所有杂务(负面评价)时,我们的算法找到了一种可行的物品分配方法,即:既适合最优,又没有嫉妒,一个物品最多一个。在一般情况下,当每件物品可以是好的或任意的时,我们的算法会找到一种分配方式,即每件物品都可以是最佳的,没有嫉妒的,一种是好的,一种是没有嫉妒的。