We propose a flexible scenario-based regularized Sample Average Approximation (SBR-SAA) framework for stochastic optimization. This work is motivated by challenges in standard Wasserstein Distributionally Robust Optimization (WDRO), where out-of-sample performance, particularly tail risk, is sensitive to the choice of the p-norm, and formulations can be computationally intractable. Our method is inspired by the asymptotic expansion of the WDRO objective and introduces a regularizer that penalizes the (sub)gradient norm of the objective at a selected set of scenarios. This framework serves a dual purpose: (i) it provides a computationally tractable alternative to WDRO by using a representative subset of the data, and (ii) it can provide targeted robustness by incorporating user-defined adverse scenarios. We establish the theoretical properties of this framework by proving its equivalence to a decision-dependent WDRO problem, from which we derive finite sample guarantees and asymptotic consistency. We demonstrate the method's efficacy in two applications: (1) a multi-product newsvendor problem, where SBR-SAA serves as a tractable alternative to NP-hard WDRO, and (2) a mean-risk portfolio optimization problem, where it successfully uses historical crisis data to improve out-of-sample performance.
翻译:我们提出了一种灵活的基于场景的正则化样本平均近似(SBR-SAA)框架,用于解决随机优化问题。本研究的动机源于标准Wasserstein分布鲁棒优化(WDRO)所面临的挑战,其中样本外性能(尤其是尾部风险)对p-范数的选择敏感,且其数学形式在计算上往往难以处理。我们的方法受到WDRO目标函数渐近展开的启发,引入了一个正则化项,该正则化项惩罚目标函数在一组选定场景下的(次)梯度范数。该框架具有双重目的:(i)通过使用数据的代表性子集,为WDRO提供一种计算上可处理的替代方案;(ii)通过纳入用户定义的不利场景,能够提供有针对性的鲁棒性。我们通过证明该框架与一个决策依赖的WDRO问题等价,从而建立了其理论性质,并由此推导出有限样本保证和渐近一致性。我们在两个应用中展示了该方法的有效性:(1)多产品报童问题,其中SBR-SAA作为NP难WDRO问题的可处理替代方案;(2)均值-风险投资组合优化问题,其中该方法成功利用历史危机数据提升了样本外性能。