Ubiquitous use of lithium-ion batteries across multiple industries presents an opportunity to explore cost saving initiatives as the price to performance ratio continually decreases in a competitive environment. Manufacturers using lithium-ion batteries ranging in applications from mobile phones to electric vehicles need to know how long batteries will last for a given service life. To understand this, expensive testing is required. This paper utilizes the data and methods implemented by Kristen A. Severson, et al, to explore the methodologies that the research team used and presents another method to compare predicted results vs. actual test data for battery capacity fade. The fundamental effort is to find out if machine learning techniques may be trained to use early life cycle data in order to accurately predict battery capacity over the battery life cycle. Results show comparison of methods between Gaussian Process Regression (GPR) and Elastic Net Regression (ENR) and highlight key data features used from the extensive dataset found in the work of Severson, et al.
翻译:由于在竞争环境中价格与性能比率持续下降,在多个行业普遍使用锂离子电池提供了一个探讨成本节约举措的机会。制造商在移动电话和电动车辆的应用中使用锂离子电池,需要了解电池对特定使用寿命的持续时间。为了了解这一点,需要进行昂贵的测试。本文利用Kristen A. Severson等人使用的数据和方法,探索研究小组使用的方法,并提出另一种方法来比较预测结果与电池能力实际测试数据衰减之间的对比。基本努力是了解是否对机器学习技术进行了培训,以便利用早期生命周期数据准确预测电池在电池寿命周期中的能力。结果显示Gausian进程回归(GPR)和Elacisnal Netrestition(ENR)之间方法的比较,并突出Severson等人的工作发现的广泛数据集所使用的关键数据特征。