Modeling online discourse dynamics is a core activity in understanding the spread of information, both offline and online, and emergent online behavior. There is currently a disconnect between the practitioners of online social media analysis -- usually social, political and communication scientists -- and the accessibility to tools capable of examining online discussions of users. Here we present evently, a tool for modeling online reshare cascades, and particularly retweet cascades, using self-exciting processes. It provides a comprehensive set of functionalities for processing raw data from Twitter public APIs, modeling the temporal dynamics of processed retweet cascades and characterizing online users with a wide range of diffusion measures. This tool is designed for researchers with a wide range of computer expertise, and it includes tutorials and detailed documentation. We illustrate the usage of evently with an end-to-end analysis of online user behavior on a topical dataset relating to COVID-19. We show that, by characterizing users solely based on how their content spreads online, we can disentangle influential users and online bots.
翻译:模拟在线话语动态是了解线下和线上信息传播以及突发在线行为的核心活动。 目前,在线社交媒体分析的实践者 -- -- 通常是社会、政治和通信科学家 -- -- 与能够检查用户在线讨论的工具的可获取性脱节。 我们在这里展示一个模拟在线再分配级联,特别是REtweet级联的工具,使用自我探索的过程。 它提供了一套全面的功能,用于处理Twitter公共APIs的原始数据,模拟经处理的retweet级联的时间动态,并用广泛的传播措施描述在线用户。 这个工具是为具有广泛计算机专门知识的研究人员设计的,包括辅导和详细文件。 我们用对与COVID-19有关的热点数据集的在线用户行为进行端对端分析来说明事件的使用情况。 我们通过仅仅根据用户内容在网上传播的方式来描述用户特征,我们就能分解有影响力的用户和在线机器人。