A prevalent theory circulating among the non-scientific community is that the intensive deployment of base stations over the territory significantly increases the level of electromagnetic field (EMF) exposure and affects population health. To alleviate this concern, in this work, we propose a network architecture that introduces tethered unmanned aerial vehicles (TUAVs) carrying green antennas to minimize the EMF exposure while guaranteeing a high data rate for users. In particular, each TUAV can attach itself to one of the possible ground stations at the top of some buildings. The location of the TUAVs, transmit power of user equipment and association policy are optimized to minimize the EMF exposure. Unfortunately, the problem turns out to be mixed-integer non-linear programming (MINLP), which is non-deterministic polynomial-time (NP) hard. We propose an efficient low-complexity algorithm composed of three submodules. Firstly, we propose an algorithm based on the greedy principle to determine the optimal association matrix between the users and base stations. Then, we offer two approaches, a modified K-mean and shrink and realign (SR) process, to associate each TUAV with a ground station. Finally, we put forward two algorithms based on the golden search and SR process to adjust the TUAV's position within the hovering area over the building. After that, we consider the dual problem that maximizes the sum rate while keeping the exposure below a predefined value, such as the level enforced by the regulation. Next, we perform extensive simulations to show the effectiveness of the proposed TUAVs to reduce the exposure compared to various architectures. Eventually, we show that TUAVs with green antennas can effectively mitigate the EMF exposure by more than 20% compared to fixed green small cells while achieving a higher data rate.


翻译:在非科学界中流传的一个普遍理论是,基地站在领土上空的密集部署大大增加了电磁场接触量和影响人口健康。为了减轻这一关切,我们提议了一个网络结构,引入带有绿色天线的系内无人驾驶飞行器(TUAVs),以尽量减少电磁天线接触量,同时保证用户使用高数据率。特别是,每个TUAV可以附着在某些建筑物顶部的一个可能的地面站。TUAVs的位置、用户设备和关联政策的传输能力将最大限度地减少电磁场接触量。不幸的是,问题变成了非线性混合内编程(MINLP),这是非非非定式的多式天线天线天线式飞行器(TUAVs),我们建议一个高效的低兼容性算法,由三个子模块组成。首先,我们提议基于贪婪原则的算法,以确定用户和基站之间的最佳关联矩阵矩阵。然后,我们提出两种方法,一个经过修改的K-移动和调整的 EMMFLP(SR) 相对于下一个电路段,一个不固定水平,一个比我们固定天际电路路路段的系统,一个比,最后显示每个方向结构,一个我们用来的螺路路路段,一个比,一个比,一个我们用来显示。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
《自然》(20190221出版)一周论文导读
科学网
6+阅读 · 2019年2月23日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月20日
Arxiv
0+阅读 · 2021年7月17日
VIP会员
Top
微信扫码咨询专知VIP会员