Half of long-term care (LTC) residents are malnourished increasing hospitalization, mortality, morbidity, with lower quality of life. Current tracking methods are subjective and time consuming. This paper presents the automated food imaging and nutrient intake tracking (AFINI-T) technology designed for LTC. We propose a novel convolutional autoencoder for food classification, trained on an augmented UNIMIB2016 dataset and tested on our simulated LTC food intake dataset (12 meal scenarios; up to 15 classes each; top-1 classification accuracy: 88.9%; mean intake error: -0.4 mL$\pm$36.7 mL). Nutrient intake estimation by volume was strongly linearly correlated with nutrient estimates from mass ($r^2$ 0.92 to 0.99) with good agreement between methods ($\sigma$= -2.7 to -0.01; zero within each of the limits of agreement). The AFINI-T approach is a deep-learning powered computational nutrient sensing system that may provide a novel means for more accurately and objectively tracking LTC resident food intake to support and prevent malnutrition tracking strategies.
翻译:长期护理(LTC)的半数居民营养不良,住院率、死亡率和发病率不断上升,生活素质较低。目前的跟踪方法是主观的和耗时的。本文介绍了为LTC设计的自动食品成像和营养摄入跟踪(AFINI-T)技术。我们建议为食品分类建立一个新型的革命自动编码器,经过强化UNIMIB2016数据集的培训,并在我们的模拟LTC食品摄入数据集中测试(12个膳食方案;每个方案多达15个类别;最高1级分类精确度:88.9%;平均摄入误差: -0.4 mL$\ pm36.7 mL)。营养摄入量估计与质量(0.92至0.99美元)的营养摄入量估计数有很强的线性关联,在方法之间达成了良好的协议(美元=-2.7至-0.01;在每个协议限度内为零)。AFINI-T方法是一种深学习有动力的计算营养感系统,可为更准确、更客观地跟踪LTC驻地食物摄入量以支持和预防营养不良跟踪战略提供新的手段。