Game AI systems need the theory of mind, which is the humanistic ability to infer others' mental models, preferences, and intent. Such systems would enable inferring players' behavior tendencies that contribute to the variations in their decision-making behaviors. To that end, in this paper, we propose the use of inverse Bayesian inference to infer behavior tendencies given a descriptive cognitive model of a player's decision making. The model embeds behavior tendencies as weight parameters in a player's decision-making. Inferences on such parameters provide intuitive interpretations about a player's cognition while making in-game decisions. We illustrate the use of inverse Bayesian inference with synthetically generated data in a game called \textit{BoomTown} developed by Gallup. We use the proposed model to infer a player's behavior tendencies for moving decisions on a game map. Our results indicate that our model is able to infer these parameters towards uncovering not only a player's decision making but also their behavior tendencies for making such decisions.
翻译:游戏 AI 系统需要思维理论, 也就是人文主义的能力来推断他人的心理模型、 偏好和意图。 这种系统可以推断出玩家的行为倾向, 从而导致他们决策行为的变化。 为此,我们建议使用反贝ysian 推论来推断行为倾向, 给玩家决策的描述性认知模式。 模型将行为倾向作为玩家决策的权重参数。 这种参数的推论提供了对玩家在游戏中作出决定时的认知的直觉解释。 我们用Gallup 开发的游戏中合成生成的数据来说明贝斯论的反推论。 我们使用拟议的模型来推断玩家在游戏地图上移动决定的行为倾向。 我们的结果表明, 我们的模型可以推断这些参数不仅可以直觉地解释玩家的决策, 还可以推断他们做出这种决定的行为倾向。