Recent years have seen many breakthroughs in natural language processing (NLP), transitioning it from a mostly theoretical field to one with many real-world applications. Noting the rising number of applications of other machine learning and AI techniques with pervasive societal impact, we anticipate the rising importance of developing NLP technologies for social good. Inspired by theories in moral philosophy and global priorities research, we aim to promote a guideline for social good in the context of NLP. We lay the foundations via the moral philosophy definition of social good, propose a framework to evaluate the direct and indirect real-world impact of NLP tasks, and adopt the methodology of global priorities research to identify priority causes for NLP research. Finally, we use our theoretical framework to provide some practical guidelines for future NLP research for social good. Our data and code are available at http://github.com/zhijing-jin/nlp4sg_acl2021. In addition, we curate a list of papers and resources on NLP for social good at https://github.com/zhijing-jin/NLP4SocialGood_Papers.
翻译:近些年来,自然语言处理(NLP)取得了许多突破,将自然语言处理(NLP)从多半理论领域转变为许多现实应用领域。我们注意到其他机器学习和AI技术的应用越来越多,而且具有广泛的社会影响,我们预计开发NLP技术对社会公益的重要性将不断提高。我们受道德哲学和全球优先研究理论的启发,我们的目标是在NLP范围内促进社会公益准则。我们通过社会公益道德哲学定义打下基础,提议一个框架来评价NLP任务的直接和间接实际世界影响,并采用全球优先研究方法确定NLP研究的优先原因。最后,我们利用我们的理论框架为未来的NLP社会公益研究提供一些实用的指导方针。我们的数据和代码见http://github.com/zijing-jin/nlp4sg_acl2021。此外,我们还在https://github.com/zhijing-jin/NLP4ScialGE_PERPS上汇编了一份有关NLP社会公益文件和资源的清单。