We show that \emph{Sorting by Strip Swaps} (SbSS) is NP-hard by a polynomial reduction of \emph{Block Sorting}. The key idea is a local gadget, a \emph{cage}, that replaces every decreasing adjacency $(a_i,a_{i+1})$ by a guarded triple $a_i,m_i,a_{i+1}$ enclosed by guards $L_i,U_i$, so the only decreasing adjacencies are the two inside the cage. Small \emph{hinge} gadgets couple adjacent cages that share an element and enforce that a strip swap that removes exactly two adjacencies corresponds bijectively to a block move that removes exactly one decreasing adjacency in the source permutation. This yields a clean equivalence between exact SbSS schedules and perfect block schedules, establishing NP-hardness.
翻译:我们通过将块排序问题多项式归约至基于条带交换的排序问题,证明了后者是NP难问题。核心思想是引入一种局部结构——笼,该结构将每个递减邻接对$(a_i,a_{i+1})$替换为由守卫$L_i,U_i$包围的受保护三元组$a_i,m_i,a_{i+1}$,从而确保仅笼内部存在两个递减邻接。小型铰链结构用于耦合共享元素的相邻笼,并强制要求:恰好消除两个邻接的条带交换与源排列中恰好消除一个递减邻接的块移动形成双射对应。这一机制建立了精确条带交换调度与完美块调度之间的清晰等价关系,从而证实了NP难性。