We show that \emph{Sorting by Strip Swaps} (SbSS) is NP-hard by a polynomial reduction of \emph{Block Sorting}. The key idea is a local gadget, a \emph{cage}, that replaces every decreasing adjacency $(a_i,a_{i+1})$ by a guarded triple $a_i,m_i,a_{i+1}$ enclosed by guards $L_i,U_i$, so the only decreasing adjacencies are the two inside the cage. Small \emph{hinge} gadgets couple adjacent cages that share an element and enforce that a strip swap that removes exactly two adjacencies corresponds bijectively to a block move that removes exactly one decreasing adjacency in the source permutation. This yields a clean equivalence between exact SbSS schedules and perfect block schedules, establishing NP-hardness.


翻译:我们通过将块排序问题多项式归约至基于条带交换的排序问题,证明了后者是NP难问题。核心思想是引入一种局部结构——笼,该结构将每个递减邻接对$(a_i,a_{i+1})$替换为由守卫$L_i,U_i$包围的受保护三元组$a_i,m_i,a_{i+1}$,从而确保仅笼内部存在两个递减邻接。小型铰链结构用于耦合共享元素的相邻笼,并强制要求:恰好消除两个邻接的条带交换与源排列中恰好消除一个递减邻接的块移动形成双射对应。这一机制建立了精确条带交换调度与完美块调度之间的清晰等价关系,从而证实了NP难性。

0
下载
关闭预览

相关内容

排序是计算机内经常进行的一种操作,其目的是将一组“无序”的记录序列调整为“有序”的记录序列。分内部排序和外部排序。若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。反之,若参加排序的记录数量很大,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。内部排序的过程是一个逐步扩大记录的有序序列长度的过程。
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey of Large Language Models
Arxiv
495+阅读 · 2023年3月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关VIP内容
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员