This article investigates a bi-objective redundancy allocation problem (RAP) for repairable systems, defined as cost minimization and availability maximization. Binary decisions jointly select the number of components and the standby strategy at the subsystem level. Four redundancy strategies are considered: cold standby, warm standby, hot standby, and a mixed strategy. System availability is evaluated using continuous-time Markov chains. The main novelty is a large, controlled benchmark that compares 65 multi-objective metaheuristics under two initialization settings, with and without Scaled Binomial Initialization (SBI), on six case studies of rising structural and dimensional complexity and four weight limits. Each run uses a fixed budget of 2x10^6 evaluations, and repeated runs support statistical comparisons based on hypervolume and budget-based performance. The Pareto-optimal sets are dominated by hot standby and mixed redundancy, while cold and warm standby are rare in the full populations and almost absent from the Pareto fronts. Hot standby is favored under tight weight limits, whereas mixed redundancy becomes dominant when more spares are allowed. Algorithm results show strong budget effects, so a single overall ranking can be misleading. SBI gives a clear hypervolume gain and can change method rankings; in several cases, the SBI initial population is already close to the best-found reference. NSGAIIARSBX-SBI performs well for medium and large budgets, while NNIA-SBI and CMOPSO-SBI are strongest when the budget is tight. Finally, larger systems require much more search effort to reach high-quality fronts, highlighting the need to plan the evaluation budget in practical RAP studies. The code and the results are available at a Zenodo repository https://doi.org/10.5281/zenodo.17981720.
翻译:本文研究可修复系统的双目标冗余分配问题,其目标定义为成本最小化与可用性最大化。通过二元决策在子系统层面同时选择组件数量与备用策略。研究考虑了四种冗余策略:冷备用、温备用、热备用以及混合策略。系统可用性采用连续时间马尔可夫链进行评估。主要创新在于构建了一个大规模受控基准测试,在两种初始化设置(采用与不采用缩放二项分布初始化方法)下,针对六个结构和维度复杂度递增的案例研究及四种重量限制,比较了65种多目标元启发式算法。每次运行采用2×10^6次评估的固定计算预算,重复运行支持基于超体积和预算相关性能的统计比较。帕累托最优解集主要由热备用和混合冗余策略主导,而冷备用和温备用策略在全体解中较为罕见,在帕累托前沿上几乎不存在。在严格重量限制下热备用策略占优,而当允许更多备用件时混合冗余策略则成为主导。算法结果显示出显著的预算效应,因此单一的整体排名可能产生误导。缩放二项分布初始化方法带来了明确的超体积增益,并能改变算法排名;在多个案例中,经该方法初始化的种群已接近最优参考解。NSGAIIARSBX-SBI在中等及大规模预算下表现优异,而NNIA-SBI与CMOPSO-SBI在预算紧张时最具优势。最后,更大规模的系统需要更多的搜索努力才能获得高质量前沿,这凸显了在实际冗余分配问题研究中规划评估预算的必要性。代码与结果已发布于Zenodo存储库https://doi.org/10.5281/zenodo.17981720。