This paper introduces a marketing decision framework that converts heterogeneous-treatment uplift into constrained targeting strategies to maximize revenue and retention while honoring business guardrails. The approach estimates Conditional Average Treatment Effects (CATE) with uplift learners and then solves a constrained allocation to decide who to target and which offer to deploy under limits such as budget or acceptable sales deterioration. Applied to retention messaging, event rewards, and spend-threshold assignment, the framework consistently outperforms propensity and static baselines in offline evaluations using uplift AUC, Inverse Propensity Scoring (IPS), and Self-Normalized IPS (SNIPS). A production-scale online A/B test further validates strategic lift on revenue and completion while preserving customer-experience constraints. The result is a reusable playbook for marketers to operationalize causal targeting at scale, set guardrails, and align campaigns with strategic KPIs.


翻译:本文提出了一种营销决策框架,该框架将异质性处理提升效应转化为约束条件下的目标定位策略,在遵守商业护栏的前提下实现收入与留存的最大化。该方法通过提升学习器估计条件平均处理效应(CATE),随后求解约束分配问题,以在预算或可接受的销售下滑等限制条件下,决定目标人群及应部署的优惠方案。该框架应用于留存信息推送、活动奖励发放及消费阈值设定等场景,在采用提升AUC、逆倾向得分加权(IPS)及自归一化逆倾向得分加权(SNIPS)的离线评估中,持续优于倾向性评分模型及静态基线方法。一次生产规模的在线A/B测试进一步验证了其在保持客户体验约束的同时,对收入与任务完成度的策略性提升效果。最终形成了一套可复用的操作手册,助力营销人员规模化实施因果目标定位、设置防护边界,并使营销活动与关键战略指标保持一致。

0
下载
关闭预览

相关内容

论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员