It was recently shown that quantum annealing can be used as an effective, fast subroutine in certain types of matrix factorization algorithms. The quantum annealing algorithm performed best for quick, approximate answers, but performance rapidly plateaued. In this paper, we utilize reverse annealing instead of forward annealing in the quantum annealing subroutine for nonnegative/binary matrix factorization problems. After an initial global search with forward annealing, reverse annealing performs a series of local searches that refine existing solutions. The combination of forward and reverse annealing significantly improves performance compared to forward annealing alone for all but the shortest run times.
翻译:最近,人们发现,量子脉冲可以在某些类型的矩阵因子化算法中作为一种有效、快速的子例程使用。量子脉冲算法对快速、近似答案效果最佳,但性能却快速稳定下来。在本文中,我们使用反向脉冲算法,而不是对非阴性/二元基质因子化问题进行量子脉冲子管系子内射法前方。在对前方进行初步全球搜索后,反向脉冲算法进行了一系列本地搜索,以完善现有解决方案。前方和反向脉冲算法的结合大大改进了业绩,而除了最短的运行时间外,仅对所有人而言,前方的性能都得到了显著改善。