In this work, we analyze how human gaze during reading comprehension is conditioned on the given reading comprehension question, and whether this signal can be beneficial for machine reading comprehension. To this end, we collect a new eye-tracking dataset with a large number of participants engaging in a multiple choice reading comprehension task. Our analysis of this data reveals increased fixation times over parts of the text that are most relevant for answering the question. Motivated by this finding, we propose making automated reading comprehension more human-like by mimicking human information-seeking reading behavior during reading comprehension. We demonstrate that this approach leads to performance gains on multiple choice question answering in English for a state-of-the-art reading comprehension model.


翻译:在这项工作中,我们分析阅读理解过程中人类的视线是如何以给定阅读理解问题为条件的,以及这个信号是否有利于机器阅读理解。为此,我们收集了一个新的眼睛跟踪数据集,大量参与者参与多重选择阅读理解任务。我们对这些数据的分析显示,对文本中与回答问题最相关的部分的固定时间增加了。受这一发现驱动,我们提议在阅读理解过程中模仿人类寻求信息的行为,使自动阅读理解更像人类。我们证明,这一方法在以英语回答多种选择问题以获得最新阅读理解模式方面,取得了成绩。

2
下载
关闭预览

相关内容

包括微软、CMU、Stanford在内的顶级人工智能专家和学者们正在研究更复杂的任务:让机器像人类一样阅读文本,进而根据对该文本的理解来回答问题。这种阅读理解就像是让计算机来做我们高考英语的阅读理解题。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
已删除
将门创投
3+阅读 · 2019年4月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
一份超全的PyTorch资源列表(Github 2.2K星)
黑龙江大学自然语言处理实验室
25+阅读 · 2018年10月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年11月29日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
QuAC : Question Answering in Context
Arxiv
4+阅读 · 2018年8月21日
VIP会员
Top
微信扫码咨询专知VIP会员