Arnold and Arvanitis (2020) introduced a novel class of bivariate conditionally specified distributions, in which dependence between two random variables is established by defining the distribution of one variable conditional on the other. This conditioning regime was formulated through survival functions and termed the accelerated failure conditionals model. Subsequently, Lakhani (2025) extended this conditioning framework to encompass distributional families whose marginal densities may exhibit unimodality and skewness, thereby moving beyond families with non-increasing densities. The present study builds on this line of work by proposing a conditional survival specification derived from a location-scale distributional family, where the dependence between $X$ and $Y$ arises not only through the acceleration function but also via a location function. An illustrative example of this new specification is developed using a Weibull marginal for $X$. The resulting models are fully characterized by closed-form expressions for their moments, and simulations are implemented using the Metropolis-Hastings algorithm. Finally, the model is applied to a dataset in which the empirical distribution of $Y$ lies on the real line, demonstrating the models' capacity to accommodate $Y$ marginals defined over $\mathbb{R}$.


翻译:Arnold与Arvanitis(2020)提出了一类新颖的双变量条件设定分布,其通过定义某一随机变量在另一变量条件下的分布来建立二者间的相依性。该条件机制通过生存函数构建,并被称为加速失效条件模型。随后,Lakhani(2025)将此条件框架扩展至涵盖边缘密度可能呈现单峰性与偏态性的分布族,从而突破了仅适用于密度非递增分布族的限制。本研究基于这一工作脉络,提出了一种源自位置-尺度分布族的条件生存设定方法,其中$X$与$Y$间的相依性不仅通过加速函数产生,还通过位置函数体现。本文以$X$服从Weibull边缘分布为例,构建了此新设定的说明性案例。所得模型可通过其矩的闭式表达式完整表征,并采用Metropolis-Hastings算法进行仿真模拟。最后,将模型应用于一个$Y$的经验分布位于实数域的数据集,证明了该模型能够适应定义于$\mathbb{R}$上的$Y$边缘分布。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员