Cardiac resynchronization therapy (CRT) is a common intervention for patients with dyssynchronous heart failure, yet approximately one-third of recipients fail to respond, partly due to suboptimal lead placement. Identifying optimal pacing sites remains challenging, largely due to patient-specific anatomical variability and limitations of current individualized planning strategies. In a step toward an in-silico approach, we develop two geometric deep learning models, based on graph neural network (GNN) and geometry-informed neural operator (GINO), to predict activation time maps on left ventricular (LV) geometries in real time. Trained on a large dataset generated from finite-element simulations spanning a wide range of synthetic LV shapes, pacing site configurations, and tissue conductivities, the GINO model outperforms the GNN on synthetic cases (1.38% vs 2.44% error), while both demonstrate comparable performance on real-world LV geometries (GINO: 4.79% vs GNN: 4.07%). Using the trained models, we develop a workflow to identify an optimal pacing site on the LV from a given activation time map and show that both models can robustly recover ground-truth subject-specific parameters from noisy inputs. In conjunction with an interactive web-based interface (https://dcsim.egr.msu.edu/), this study shows potential and motivates future extension toward a clinical decision-support tool for personalized pre-procedural CRT optimization.
翻译:心脏再同步化治疗(CRT)是治疗失同步性心力衰竭患者的常用干预手段,但约三分之一的受者未能产生应答,部分原因在于起搏电极位置欠佳。识别最佳起搏位点仍具挑战性,主要归因于患者特异性解剖变异以及当前个体化规划策略的局限性。为迈向计算模拟方法,我们开发了两种基于图神经网络(GNN)和几何信息神经算子(GINO)的几何深度学习模型,以实时预测左心室(LV)几何结构上的电激活时间图。模型在通过有限元仿真生成的大规模数据集上进行训练,该数据集涵盖了广泛的合成左心室形状、起搏位点配置和组织电导率。在合成案例中,GINO模型的表现优于GNN(误差分别为1.38% vs 2.44%),而两者在真实左心室几何结构上表现出相当的性能(GINO:4.79% vs GNN:4.07%)。利用训练好的模型,我们开发了一个工作流程,用于从给定的电激活时间图中识别左心室上的最佳起搏位点,并证明两种模型均能从含噪声输入中稳健地恢复出真实受试者特异性参数。结合基于网络的交互式界面(https://dcsim.egr.msu.edu/),本研究展现了潜力,并推动未来将其扩展为用于个性化术前CRT优化的临床决策支持工具。