Neural networks are used for channel decoding, channel detection, channel evaluation, and resource management in multi-input and multi-output (MIMO) wireless communication systems. In this paper, we consider the problem of finding precoding matrices with high spectral efficiency (SE) using variational autoencoder (VAE). We propose a computationally efficient algorithm for sampling precoding matrices with minimal loss of quality compared to the optimal precoding. In addition to VAE, we use the conditional variational autoencoder (CVAE) to build a unified generative model. Both of these methods are able to reconstruct the distribution of precoding matrices of high SE by sampling latent variables. This distribution obtained using VAE and CVAE methods is described in the literature for the first time.
翻译:在多投入和多输出(MIMO)无线通信系统中,利用神经网络进行频道解码、频道探测、频道评估和资源管理。在本文件中,我们考虑了使用变式自动编码器找到高光谱效率(SE)的预编码矩阵的问题。我们建议采用一种计算效率的算法,对预编码矩阵进行取样,与最佳预编码相比质量损失最小。除了VAE外,我们还使用有条件的变式自动编码器(CVAE)来构建一个统一的基因化模型。这两种方法都能够通过取样潜在变量来重建高光谱预编码矩阵的分布。在文献中首次描述了使用VAE和CVAE方法进行的这种分布。