项目名称: 新型金属@MOFs核-壳结构材料的可控制备及多相催化性能研究
项目编号: No.21501003
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 柯飞
作者单位: 安徽农业大学
项目金额: 20万元
中文摘要: 金属-有机骨架材料由过渡金属离子和多官能团有机配体通过配位键自组装而成,是近年来得到快速发展的一类多孔晶体材料。目前,关于金属-有机骨架负载无机纳米颗粒复合催化剂的研究报道很多,但基于金属-有机骨架核-壳结构催化剂的报道较少。本项目拟采用分子设计思想和后合成改性策略,探索一类基于金属-有机骨架的新型核-壳结构多孔催化材料的可控制备,以获得具有协同催化和循环使用功能的多孔催化材料体系,并将其应用于多种有机催化反应;系统考察核-壳催化剂的合成条件和催化性能;通过大量的合成与性能测试,总结出协同催化机理,阐明核-壳结构中金属-有机骨架的壳层厚度、孔洞形状与尺寸以及金属纳米颗粒核的尺寸等与其催化性能间的内在联系等科学问题,为新型核-壳多孔功能材料和高效多相催化材料的开发打下坚实的实验和理论基础。
中文关键词: 金属-有机骨架;多孔材料;核-壳结构;可控合成;催化性能
英文摘要: Metal-organic frameworks (MOFs) synthesized by assembling transition metal ions with organic ligands have recently emerged as a new class of porous crystalline materials. Recently, there have been a few pioneering studies on the MOFs supported metal nanoparticles or bimetallic alloy nanoparticles for heterogeneous catalysis. By contrast, researches on MOF-based core–shell catalysts with functional nanoparticles as core and MOFs as shell have not been popular to date. In this proposal, a novel type of porous core-shell heterostructures MOF-based materials with tailorable structures, designable functions, and tunable cavities, as well as general preparative methods for designing and fabricating this type of core-shell material, are proposed. Furthermore, we hope to demonstrate the rational design of novel core-shell reusable catalysts with synergistically enhanced catalytic performance by using the molecular design method and post-synthetic strategy. After applying the as-synthesized core-shell catalysts in various organic reaction systems, we expect to clarify the exact catalytic mechanism, with the intention of illustrating the relationship between the catalytic properties and thickness of the MOFs shell, pore size and shape, and the size of metal nanoparticles core. It is highly expected that this proposal research will provide useful information for designing and constructing new classes of functionalized core-shell porous materials and high performance heterogeneous catalysts.
英文关键词: Metal-organic frameworks;porous materials;core-shell structure;controllable synthesis ;catalytic properties