项目名称: 中性原子里德堡阻塞效应在量子信息中的应用

项目编号: No.11305037

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 吴怀志

作者单位: 福州大学

项目金额: 20万元

中文摘要: 囚禁在光晶格或光镊内的中性原子被激发到主量子数较高的里德堡能级后可以在几微米到十几微米距离范围内发生相互作用,即里德堡阻塞效应。由于原子间距大于可见光波长,因而实验上可以利用激光对单个里德堡原子进行独立控制并读取其量子态。里德堡阻塞效应在量子信息和凝聚态物理多体动力学的量子模拟中都有广泛应用。最近,人们利用该效应在实验上成功制备了两原子最大纠缠态和构建了两比特量子受控非门,但是在多种退相干机制的影响下,保真度仍然不高。因此,我们对在耗散影响下里德堡原子与量子化光场的相干耦合及里德堡阻塞诱导的非线性光学效应的应用展开研究具有重要的科学意义。我们将研究利用里德堡阻塞效应诱导的非线性光学效应实现光量子计算;研究里德堡原子和腔量子电动力学系统衔接的复合体系,阐述光子动力学与里德堡阻塞效应之间的联系,提出能有效抑制耗散的量子信息处理方案,为里德堡原子与超导电路微波光子直接耦合系统的研究提供理论参考。

中文关键词: 里德堡原子;电磁诱导透明;激发动力学;量子信息处理;

英文摘要: Neutral atoms trapped in optical lattice or optical tweezers and separated by few micrometers to tens of micrometers can interact with each other while they are excited to the Rydberg states with high principal quantum numbers. This phenomenon is named Rydberg blockade. Since the interatomic distance can be larger than the wavelength of visible light, it is able to realize individual control and readout of the quantum states for the interacting Rydberg atoms experimentally. There have been many applications of the Rydberg blockade effect in implementing quantum information processing and simulating many-body quantum dynamics in condensed matter physics. Recently, experimental demonstrations of the maximally entangled states and the quantum controlled NOT gate have been successfully completed with two neutral atoms via Rydberg blockade, however, the fidelity of the demonstrations are currently limited by many kinds of dissipation sources. Therefore, it is scientifically important to study the coherent coupling between Rydberg atoms and quantized light fields under the influence of dissipation and to study the applications of Rydberg blockade induced nonlinear optical effect. In this project, the nonlinear optical effects induced by Rydberg blockade will be studied and used for optical quantum computation. The hyb

英文关键词: Rydberg atom;Electramagnetically induced transparency;excitation dynamics;quantum information processing;

成为VIP会员查看完整内容
0

相关内容

【博士论文】集群系统中的网络流调度
专知会员服务
38+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年10月16日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
57+阅读 · 2021年1月6日
专知会员服务
44+阅读 · 2020年12月20日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
18+阅读 · 2020年9月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
小贴士
相关VIP内容
【博士论文】集群系统中的网络流调度
专知会员服务
38+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年10月16日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
57+阅读 · 2021年1月6日
专知会员服务
44+阅读 · 2020年12月20日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
18+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员