项目名称: 点缺陷对碳管-石墨烯纳米带异质结自旋电子学特性的影响机制研究

项目编号: No.11304022

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 曾晖

作者单位: 长江大学

项目金额: 25万元

中文摘要: 准一维碳基纳米材料,特别是碳纳米管和石墨烯纳米带,因其独特的电子结构和优异的电子输运特性而被广泛地认为是制造新型自旋电子器件的理想材料,但实验制备中难以避免各种无序的产生,无序对电子自旋特性影响的物理机制成为自旋电子学器件实用化的关键课题。本项目根据当前的理论和实验研究结果,提出将两种准一维碳纳米材料有机地结合形成碳纳米管-石墨烯纳米带异质结构作为自旋电子学基础性器件,充分利用异质原子和空位缺陷两类点缺陷微结构更加有效地调控异质结的自旋电子学特性。因此,探索点缺陷对异质结自旋电子输运特性的影响机制成为一个亟待解决的重要理论课题。本项目采用密度泛函理论结合非平衡格林函数方法进一步发展对不同手性异质结构的自旋电子输运性能的预测,考虑弯折对异质结构和电极之间相互作用的影响,最后确立点缺陷对异质结构自旋电子输运性能影响的物理机制和参数调控体系,为新型自旋纳米电子器件设计提供理论依据和性能预测方法。

中文关键词: 复合缺陷;准一维纳米材料;电子结构;纳米器件;自旋电子学

英文摘要: The quasi one dimensional (1D) carbon-based nanomaterials, such as carbon nanotube (CNT) and graphene nanoribbon (GNR), are widely regarded as the most promising candidates to make next generation electronic devices because of their novel electronic structure and outstanding transport properties. As is well known, the presence of various types of disorder during preparation is generally inevitable. The physical mechanism for spin-dependent characteristics influenced by the disorder is emerging as the key issue and of significance for the practical applications of nanodevices in the field of spintronics. We propose the heterojunction model constructed by the organic combination of CNT and GNR as the components for spintronics on the basis of recent experimental progresses and theoretical demonstrations. In order to effectively modulate the spin-dependent characteristics of the heterojunction, we will take full advantage of vacancy defects, heteroatoms as well as microstructural defects. As a consequence, the influence of point defects on the spin-dependent characteristics is becoming one of the most crucial theoretical problems that need to be addressed. This project is devoted to the comprehensive prediction of spin-dependent electronic transport properties of CNT-GNR heterojunction with different chiralities by

英文关键词: complex defects;quasi-one dimensional nanomaterial;electronic structure;Nanoelectronics;Spintronics

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
18+阅读 · 2020年12月23日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
「深度神经网络 FPGA 」最新2022研究综述
专知
3+阅读 · 2022年3月26日
JDK 18 最新动态和 JDK 19 新特性预测
InfoQ
0+阅读 · 2022年3月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
18+阅读 · 2020年12月23日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员