项目名称: 大功率LED相变封装热沉强化沸腾结构犁削烧结成形机理

项目编号: No.51205072

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 向建化

作者单位: 广州大学

项目金额: 25万元

中文摘要: 大功率LED作为新一代固态照明光源具有节能、环保和长寿命优势,针对大功率LED芯片封装及应用系统的微型化和高集成度发展趋势,传统封装热沉难以满足其散热需求的现状。本项目提出利用相变封装热沉作为大功率LED封装传热器件,采用犁削烧结法在热沉内壁制造三维复合强化沸腾结构以提高其传热能力。通过相变封装热沉三维结构建模,利用数值模拟计算方法对热沉内壁强化沸腾结构进行多参数耦合设计并分析其热作用机理;研究微沟槽犁削成形时金属流动规律,建立表面具有多/微尺度特征的三维微沟槽结构模型和犁削力预测模型并优化热沉内壁三维独立微毛刺成形的工艺参数;研究三维沟槽与铜粉固相烧结成形机理,通过实验研究方法确定最优的工艺参数组合,实现多孔层强化沸腾复合结构成形主动控制的目的。本项目的研究对建立拥有自主知识产权的大功率LED封装热控制元件的制造技术以及对提高我国相变传热器件的理论研究水平具有重要意义。

中文关键词: 大功率LED;封装热沉;犁削烧结;强化沸腾;相变传热

英文摘要: High power Light Emitting Diode (LED), a new type of solid-state light source, had exhibited many advantages including energy conservation, environmental friendly and long life time. With the miniaturization and highly integrated development of LED package and application system, the traditional solid heat sink was difficult to satisfy the industrial demand. In this project, a kind of phase change heat sink based on the principle of phase change heat transfer was used for high power LED packaging. The ploughing and sintering method were proposed to fabricate the enhanced boiling structure on phase change heat sink to improve the performance of heat transfer. The three-dimensional structure modeling of heat sink was firstly set up, enhanced boiling structure was then designed under multi-parameters coupling condition, and its mechanism of heat transfer was analyzed by using the numerical simulation method. According to the law of metal flow, both the modeling of three-dimensional micro-groove with multiple-micro-scale microstructure feature and the prediction model of cutting force were established. Forming parameters of three-dimensional burr of heat sink was optimized. Optimal sintering parameters were finally confirmed by experimental method to control the enhanced boiling structure to produce the porous layer

英文关键词: High power LED;Package heat sink;Ploughing and sintering;Enhanced boiling;Phase change heat transfer

成为VIP会员查看完整内容
0

相关内容

迈向2060碳中和:石化行业低碳发展白皮书
专知会员服务
26+阅读 · 2022年4月27日
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
军事知识图谱构建技术
专知会员服务
120+阅读 · 2022年4月8日
最新元宇宙白皮书:做虚实融合世界的赋能者
专知会员服务
106+阅读 · 2022年1月14日
中国无线经济白皮书,49页pdf
专知会员服务
13+阅读 · 2021年10月21日
专知会员服务
94+阅读 · 2021年9月21日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
深度报告:特种钢铁行业,支撑高端制造
材料科学与工程
12+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关主题
相关VIP内容
迈向2060碳中和:石化行业低碳发展白皮书
专知会员服务
26+阅读 · 2022年4月27日
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
军事知识图谱构建技术
专知会员服务
120+阅读 · 2022年4月8日
最新元宇宙白皮书:做虚实融合世界的赋能者
专知会员服务
106+阅读 · 2022年1月14日
中国无线经济白皮书,49页pdf
专知会员服务
13+阅读 · 2021年10月21日
专知会员服务
94+阅读 · 2021年9月21日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员