项目名称: 基于硫化钨饱和吸收体的低抖动光纤锁模激光器

项目编号: No.61505105

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 吴侃

作者单位: 上海交通大学

项目金额: 20万元

中文摘要: 低抖动全光纤飞秒锁模激光器在超快物理现象探究、超高速信息处理、航空航天、国防等诸多领域都有广泛应用。锁模激光器的关键因素之一是饱和吸收体。硫化钨作为过渡金属硫化物材料,具有亚带隙饱和吸收特性和超快的弛豫时间,可集成于全光纤系统,实现激光器的低抖动锁模运行。但硫化钨材料表现出的亚带隙饱和吸收特性的物理机理尚不是很清楚,饱和吸收体材料弛豫特性对激光器噪声的影响也有待深入探索。本项目将对此开展深入研究,并实现基于硫化钨的低抖动全光纤锁模激光器。主要研究内容包括:硫化钨纳米片制备;硫化钨纳米片边缘态具有的亚带隙饱和吸收特性研究;硫化钨-聚合物饱和吸收体薄膜制备;硫化钨材料弛豫特性对锁模激光器噪声影响与优化。通过项目研究,阐明硫化钨亚带隙饱和吸收特性的物理机理,为基于硫化钨饱和吸收体的低抖动锁模激光器研制及其在国防、航空航天和频率计量等高精度领域的应用提供技术支撑。

中文关键词: 硫化钨;锁模激光器;饱和吸收;时间抖动;相位噪声

英文摘要: Low-timing-jitter all-fiber femtosecond mode-locked lasers have wide applications in ultrafast physical phenomenon research, ultra-high-speed signal processing, aeronautics, astronautics and national security. One of the key factors of mode-locked lasers is saturable absorber. Tungsten disulfide (WS2) as a kind of transition metal dichalcogenides, has sub-bandgap saturable absorption and ultrafast relaxation time and thus can be integrated into all-fiber systems and realize low-timing-jitter mode locking operation. However, the physical principle of sub-bandgap absorption of WS2 is unclear yet and the influence of its relaxation property on the laser noise also requires further investigation. This project will investigate these two aspects and realize a WS2-based low-timing-jitter all-fiber mode-locked laser. The main research contents include: the preparation of WS2 nanosheets, research on the sub-bandgap absorption of the edge states, fabrication of WS2-polymer saturable absorber, influence of WS2 relaxation property on laser noise and its optimization. The research of the project will reveal the physical principle of WS2 sub-bandgap absorption and provide technological support on the high-precision applications of WS2-based low-timing-jitter mode-locked lasers on national security, aeronautics, astronautics and frequency metrology.

英文关键词: tungsten disulfide;mode-locked laser;saturable absorption;timing jitter;phase noise

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
43+阅读 · 2021年5月24日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
19+阅读 · 2021年5月1日
2019中国硬科技发展白皮书 193页
专知会员服务
78+阅读 · 2019年12月13日
历时 21 天,5 台骁龙 8 手机横评来了!
ZEALER订阅号
0+阅读 · 2022年2月26日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关VIP内容
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
43+阅读 · 2021年5月24日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
专知会员服务
19+阅读 · 2021年5月1日
2019中国硬科技发展白皮书 193页
专知会员服务
78+阅读 · 2019年12月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员