光纤通信速率破纪录!每秒能传1.84Pbit,2倍于全球互联网总流量 | Nature子刊

2022 年 10 月 27 日 量子位
Alex 发自 凹非寺
量子位 | 公众号 QbitAI

现在,光纤信息传输能快到什么程度??

最新研究显示,科学家们又在光纤通信的速度上取得了重大突破

他们在约8公里长的光纤上,成功实现了1.84Pbit/s的传输速率。

每秒1.84Pbit,是个什么概念?

这相当于每秒可以传输约236个1TB硬盘的数据;同时也相当于NASA等重量级科研机构专用网络速度的20多倍。

Phys.org指出,这还相当于目前全球互联网总流量的2倍

要知道,先前在今年5月份,光纤通信的速度才刚刚被刷新过一次,从每秒Tbit的量级上升到了Pbit量级——达到1.02 Pbit/s。

(1Pbit=1024Tbit)

而现在,这项纪录再度被刷新,背后的团队来自丹麦哥本哈根大学和瑞典查尔姆斯理工大学。

值得注意的是,他们是世界上第一个仅用“单个激光器+单个光学芯片”,就实现每秒传输速度超过1Pbit的团队。

截至目前,相关成果论文已经登上了Nature旗下的光学类顶刊:Nature Photonics。

这项成果在Hacker Newer社区上也引起了众网友的关注。

有人激动地表示:

这可能会引导出一种全新的缓存形式,数据将不断围绕着一圈光纤飞速传播。

随着相关光学传感器越来普及、越来越越便宜,当前未被使用的暗光纤将派上用场。

定制光学芯片,大幅提升传播速度

本研究涉及的主要领域就是光纤通信。

在这里先来说说光纤通信系统基本组成,它包括:光发信机、光收信机、光纤、光缆,还有中继器等。 

而在此研究中,最值得拿来说道说道的,就是光发信机部分的光源(光发信机由光源、驱动器和调制器组成)

研究人员专门设计定制出了一种光学芯片,它能把来自红外激光器的光转换成由许多颜色组成的彩虹光谱。

不同颜色光的频率不同。

因此,经此芯片处理后,单一激光的一个频率(颜色)甚至可以变出上百种频率(颜色)

而且通过人为操控,这些新生成颜色的频率差距都是固定的,很像梳子上的齿。

于是对这样的光谱,人送称号:光学频率梳 (Frequency comb,简称频率梳)

这个频率梳有两大明显优势

一是作为光波传输的源头,这些梳状结构很适合波分复用(WDM),数据会被调制到每个梳状线上,然后被同时传输。

由于每个单色光之间的频率和频率差都是固定的,所以也不用担心一下子传这么多数据,会引起混乱。

而如果直接用单一激光二极管的阵列作为光源,不仅需要更多硬件,而且每个激光器的频率容易随机漂移,造成数据间的串扰。

其二,所有这些生成的光都是相干的,这使得不同通道之间还可以联合进行数字信号处理。

所以总而言之,用频率梳充当光源,不仅可以同时传送多组互相不干扰的数据,而且还能联合处理数字信号,最终大大加快了数据传输速率。

为了测试种方案的实际效果,研究者们在一条光纤上进行了实验。

这条光纤长7.9公里,有37芯、223个频率通道。

研究人员对所得数据分析计算后得出,在这条光纤上的信息传输速率达到了1.84Pbit/s。

本文的共同一作,Oxenløwe教授指出:

这个解决方案是可扩展的。

可以通过技术手段,创建更多频率,而且可以在较小的副空间上先梳理不同的同频,再将其进行光学放大,有效解决存储空间和传输效率的问题。

研究团队简介

本研究由丹麦哥本哈根大学尼尔斯·玻尔研究所和丹麦技术大学(DTU)的团队主导,瑞典查尔姆斯理工大学的学者们也参与了研究。

尼尔斯·玻尔(量子理论创始人之一)研究所成立于1921年,目前的研究领域涉及天体物理学、生物物理学、电子科学,和量子物理学等。

论文的共同一作有3位,分别为:A. A. Jørgensen,和D. Kong和L. K. Oxenløwe。

L. K. Oxenløwe,现任丹麦技术大学光子通信技术教授,并兼任丹麦光通信用硅光子学(SPOC)研究中心的负责人。

1996年至2002年间,Oxenløwe先后在哥本哈根大学获得了物理学以及天文学学士和理学硕士学位,后在丹麦技术大学获得博士学位。

他的主要研究领域包括光纤通信、量子纠缠、量子计算等。

A. A. Jørgensen和D. Kong目前都是尼尔斯·玻尔研究所的研究员。

论文地址:
https://www.nature.com/articles/s41566-022-01082-z
参考链接:
[1]https://newatlas.com/telecommunications/optical-chip-fastest-data-transmission-record-entire-internet-traffic/

[2]https://phys.org/news/2022-10-transmission-laser-optical-chip.html
[3]https://news.ycombinator.com/item?id=33315392

MEET 2023 大会启动

邀你共论智能产业穿越周期之道

今年12月,MEET2023智能未来大会将再度邀请智能科技产业、科研、投资领域大咖嘉宾,共同探讨人工智能行业破局之道。

欢迎智能科技企业参会,分享突破性成果,交流时代级变革,共襄盛会!点击链接或下方图片查看大会详情:

量子位「MEET 2023智能未来大会」启动,邀你共论智能产业穿越周期之道


点这里关注我 👇 记得标星噢 ~


一键三连「分享」、「点赞」和「在看」

科技前沿进展日日相见 ~ 


登录查看更多
0

相关内容

【Nature.Mac.Intel】基于DNA调控电路的分子卷积神经网络
专知会员服务
10+阅读 · 2022年8月7日
2022年中国AI医学影像行业概览
专知会员服务
66+阅读 · 2022年7月17日
【Nature. Mach. Intell. 】图神经网络论文汇集
专知会员服务
46+阅读 · 2022年3月26日
【NeurIPS 2020】图神经网络GNN架构设计
专知会员服务
83+阅读 · 2020年11月19日
原来水滴用的是超音速爆炸攻击 | Nature子刊
量子位
0+阅读 · 2022年8月21日
Nature:猪死亡1小时后,器官再次运转
量子位
0+阅读 · 2022年8月4日
来看看几篇Nature上的GNN吧~
图与推荐
2+阅读 · 2022年3月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
37+阅读 · 2021年9月28日
Arxiv
35+阅读 · 2021年1月27日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员