强化学习是机器学习领域的研究热点, 是考察智能体与环境的相互作用, 做出序列决策、优化策略并最大化累积回报的过程. 强化学习具有巨大的研究价值和应用潜力, 是实现通用人工智能的关键步骤. 本文综述了强化学习算法与应用的研究进展和发展动态, 首先介绍强化学习的基本原理, 包括马尔可夫决策过程、价值函数、探索-利用问题. 其次, 回顾强化学习经典算法, 包括基于价值函数的强化学习算法、基于策略搜索的强化学习算法、结合价值函数和策略搜索的强化学习算法, 以及综述强化学习前沿研究, 主要介绍多智能体强化学习和元强化学习方向. 最后综述强化学习在游戏对抗、机器人控制、城市交通和商业等领域的成功应用, 以及总结与展望.
http://www.c-s-a.org.cn/csa/article/abstract/7701
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“RL13” 可以获取《强化学习算法与应用综述(中文版), 13页pdf》专知下载链接索引