超越Mask-RCNN:谷歌大脑的AI,自己写了个目标检测AI

2019 年 4 月 19 日 中国人工智能学会
方栗子 发自 凹非寺
量子位 出品 | 公众号 QbitAI

这是一只AI生出的小AI。

谷歌大脑的Quoc Le团队,用神经网络架构搜索 (NAS) ,发现了一个目标检测模型。长这样:

 看不清请把手机横过来

它的准确率速度都超过了大前辈Mask-RCNN;也超过了另外两只行业精英:FPN和SSD。

模型叫做NAS-FPN。大佬Quoc Le说,它的长相完全在想象之外,十分前卫:

 喜讯发布一日,已收获600颗心

AI的脑洞果然和人类不一样。对比一下,目标检测界的传统方法FPN (特征金字塔网络) 长这样:

谷歌大脑说,虽然网络架构搜索 (NAS) 并不算新颖,但他们用的搜索空间与众不同。

怎么搜出来?

在NAS-FPN出现之前,地球上最强大的目标检测模型,架构都是人类手动设计的。

 这是Mask-RCNN的成果

NAS是一种自动调参的方法,调的不是训练超参数,是网络架构超参数:比如网络多少层、每层都是什么算子、卷积层里的过滤器大小等等。

它可以在许多许多不同的架构里,快速找到性能最好的那一个。

所以,要把目标检测的常用架构FPN (特征金字塔网络) 和NAS结合起来,发现那只最厉害的AI。

但问题是搜索空间太大,特征横跨许多不同的尺度。

于是,团队基于RetinaNet框架,设计了一个新的搜索空间:

这里,一个FPN是由许多的“合并单元 (Merging Cells) ”组成的。

是要把输入的不同尺度/分辨率的特征层,合并到RetinaNet的表征里去。

具体怎样合并?这是由一个RNN控制器来决定的,经过四个步骤:

一是,从输入里任选一个特征层;

二是,从输入里再选一个特征层;

三是,选择输出的特征分辨率;

四是,选择一种二进制运算,把两个特征层 (用上一步选定的分辨率) 合并起来。

第四步有两种运算可选,一种是加和 (sum) ,一种是全局池化 (Global Pooling) 。两个都是简单、高效的运算,不会附加任何带训练的参数。

一个Cell就这样合并出来了,但这只是中间结果。把它加到刚才的输入列表里,和其他特征层排在一起。

然后,就可以重新选两个特征层,重复上面的步骤一、二、四,保持分辨率不变。

(团队说,如果要避免选到相同分辨率的两个特征层,就不要用步长8。2和4是比较合适的步长)

就这样,不停地生成新的Cell。

停止搜索的时候,最后生成的5个Cell,会组成“被选中的FPN”出道

那么问题来了,搜索什么时候能停?

不是非要全部搜索完,随时都可以退出。反正分辨率是不变的,FPN是可以随意扩展的。

团队设定了Early Exit (提前退出) 机制,用来权衡速度和准确率。

最终发布NAS-FPN的,是AI跑了8,000步之后,选取最末5个Cell生成的网络。回顾一下:

 看不清请把手机横过来

从原始FPN (下图a) 开始,它走过的路大概是这样的:

跑得越久,生成的网络就越蜿蜒。

模型怎么样?

NAS-FPN可以依托于各种骨架:MobileNet,ResNet,AmoebaNet……

团队选择的是AmoebaNet骨架。

那么,用COCO test-dev数据集,和那些强大的前辈比一比高清大图检测效果。

比赛结果发布:

 看不清请把手机横过来

NAS-FPN拿到了48.3的AP分,超过了Mask-RCNN,并且用时更短 (右边第二列是时间) 。

另外一场比赛,是移动检测 (320x320) ,NAS-FPN的轻量版本,跑在MobileNet2骨架上:

超过了厉害的前辈SSD轻量版,虽然,还是没有赶上YOLOv3

 YOLOv3过往成果展

不过,打败Mask-RCNN已经是值得庆祝的成就了。

One More Thing

NAS既然如此高能,应该已经搜索过很多东西了吧?

谷歌大脑的另一位成员David Ha列出了7种

1) 基于CNN的图像分类器,2) RNN,3) 激活函数,4) SGD优化器,5) 数据扩增,6) Transformer,7) 目标检测。

并发射了直击灵魂的提问:下一个被搜的会是什么?

他的同事摘得了最佳答案:NAS啊

 NAS

论文传送门:
https://arxiv.org/pdf/1904.07392.pdf

作者系网易新闻·网易号“各有态度”签约作者


活动报名|多模态视频人物识别

加入社群

量子位AI社群开始招募啦,量子位社群分:AI讨论群、AI+行业群、AI技术群;


欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“微信群”,获取入群方式。(技术群与AI+行业群需经过审核,审核较严,敬请谅解)


量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

喜欢就点「好看」吧 !

登录查看更多
1

相关内容

从HPO到NAS: 自动深度学习
专知会员服务
37+阅读 · 2020年6月15日
3D目标检测进展综述
专知会员服务
191+阅读 · 2020年4月24日
CVPR2020 | 商汤-港中文等提出PV-RCNN:3D目标检测新网络
专知会员服务
43+阅读 · 2020年4月17日
卷积神经网络四种卷积类型
炼数成金订阅号
18+阅读 · 2019年4月16日
卷积神经网络的最佳解释!
专知
12+阅读 · 2018年5月1日
从FPN到Mask R-CNN,一文告诉你Facebook的计算机视觉有多强
人工智能头条
6+阅读 · 2018年3月20日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
5+阅读 · 2019年4月8日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Arxiv
8+阅读 · 2018年11月21日
Arxiv
9+阅读 · 2018年5月7日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
7+阅读 · 2018年1月24日
VIP会员
相关论文
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Mesh R-CNN
Arxiv
4+阅读 · 2019年6月6日
Arxiv
5+阅读 · 2019年4月8日
Panoptic Feature Pyramid Networks
Arxiv
3+阅读 · 2019年1月8日
Arxiv
8+阅读 · 2018年11月21日
Arxiv
9+阅读 · 2018年5月7日
Arxiv
7+阅读 · 2018年3月19日
Arxiv
7+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员