Postgres 索引类型探索之旅

2017 年 11 月 7 日 Linux中国 译者:qhwdw
Postgres 有几种索引类型, 并且每个新版本都似乎增加一些新的索引类型。每个索引类型都是有用的,但是具体使用哪种类型取决于(1)数据类型,有时是(2)表中的底层数据和(3)执行的查找类型。
-- Craig Kerstiens


本文导航
编译自 | https://www.citusdata.com/blog/2017/10/17/tour-of-postgres-index-types/ 
 作者 | Craig Kerstiens
 译者 | qhwdw

在 Citus 公司,为让事情做的更好,我们与客户一起在数据建模、优化查询、和增加 索引[1]上花费了许多时间。我的目标是为客户的需求提供更好的服务,从而创造成功。我们所做的其中一部分工作是持续[2]为你的 Citus 集群保持良好的优化和 高性能[3];另外一部分是帮你了解关于 Postgres 和 Citus 你所需要知道的一切。毕竟,一个健康和高性能的数据库意味着 app 执行的更快,并且谁不愿意这样呢? 今天,我们简化一些内容,与客户分享一些关于 Postgres 索引的信息。

Postgres 有几种索引类型, 并且每个新版本都似乎增加一些新的索引类型。每个索引类型都是有用的,但是具体使用哪种类型取决于(1)数据类型,有时是(2)表中的底层数据和(3)执行的查找类型。接下来的内容我们将介绍在 Postgres 中你可以使用的索引类型,以及你何时该使用何种索引类型。在开始之前,这里有一个我们将带你亲历的索引类型列表:

◈ B-Tree
◈  倒排索引Generalized Inverted Index (GIN)
◈  倒排搜索树Generalized Inverted Seach Tree (GiST)
◈  空间分区的Space partitioned GiST (SP-GiST)
◈  块范围索引Block Range Index (BRIN)
◈ Hash

现在开始介绍索引。

在 Postgres 中,B-Tree 索引是你使用的最普遍的索引

如果你有一个计算机科学的学位,那么 B-Tree 索引可能是你学会的第一个索引。B-tree 索引[4] 会创建一个始终保持自身平衡的一棵树。当它根据索引去查找某个东西时,它会遍历这棵树去找到键,然后返回你要查找的数据。使用索引是大大快于顺序扫描的,因为相对于顺序扫描成千上万的记录,它可以仅需要读几个 [5] (当你仅返回几个记录时)。

如果你运行一个标准的 CREATE INDEX 语句,它将为你创建一个 B-tree 索引。 B-tree 索引在大多数的数据类型上是很有价值的,比如文本、数字和时间戳。如果你刚开始在你的数据库中使用索引,并且不在你的数据库上使用太多的 Postgres 的高级特性,使用标准的 B-Tree 索引可能是你最好的选择。

GIN 索引,用于多值列

倒排索引Generalized Inverted Index,一般称为 GIN[6],大多适用于当单个列中包含多个值的数据类型。

据 Postgres 文档: 

“GIN 设计用于处理被索引的条目是复合值的情况,并且由索引处理的查询需要搜索在复合条目中出现的值。例如,这个条目可能是文档,查询可以搜索文档中包含的指定字符。”

包含在这个范围内的最常见的数据类型有:

◈  hStore [7]
◈ Array
◈ Range
◈  JSONB [7]

关于 GIN 索引中最让人满意的一件事是,它们能够理解存储在复合值中的数据。但是,因为一个 GIN 索引需要有每个被添加的单独类型的数据结构的特定知识,因此,GIN 索引并不是支持所有的数据类型。

GiST 索引, 用于有重叠值的行

倒排搜索树Generalized Inverted Seach Tree(GiST)索引多适用于当你的数据与同一列的其它行数据重叠时。GiST 索引最好的用处是:如果你声明一个几何数据类型,并且你希望知道两个多边型是否包含一些点时。在一种情况中一个特定的点可能被包含在一个盒子中,而与此同时,其它的点仅存在于一个多边形中。使用 GiST 索引的常见数据类型有:

◈ 几何类型
◈ 需要进行全文搜索的文本类型

GiST 索引在大小上有很多的固定限制,否则,GiST 索引可能会变的特别大。作为其代价,GiST 索引是有损的(不精确的)。

据官方文档:

“GiST 索引是有损的,这意味着索引可能产生虚假匹配,所以需要去检查真实的表行去消除虚假匹配。 (当需要时 PostgreSQL 会自动执行这个动作)”

这并不意味着你会得到一个错误结果,它只是说明了在 Postgres 给你返回数据之前,会做了一个很小的额外工作来过滤这些虚假结果。

特别提示:同一个数据类型上 GIN 和 GiST 索引往往都可以使用。通常一个有很好的性能表现,但会占用很大的磁盘空间,反之亦然。说到 GIN 与 GiST 的比较,并没有某个完美的方案可以适用所有情况,但是,以上规则应用于大部分常见情况。

SP-GiST 索引,用于更大的数据

空间分区 GiST (SP-GiST)索引采用来自 Purdue[8] 研究的空间分区树。 SP-GiST 索引经常用于当你的数据有一个天然的聚集因素,并且不是一个平衡树的时候。 电话号码是一个非常好的例子 (至少 US 的电话号码是)。 它们有如下的格式:

◈ 3 位数字的区域号
◈ 3 位数字的前缀号 (与以前的电话交换机有关)
◈ 4 位的线路号

这意味着第一组前三位处有一个天然的聚集因素,接着是第二组三位,然后的数字才是一个均匀的分布。但是,在电话号码的一些区域号中,存在一个比其它区域号更高的饱合状态。结果可能导致树非常的不平衡。因为前面有一个天然的聚集因素,并且数据不对等分布,像电话号码一样的数据可能会是 SP-GiST 的一个很好的案例。

BRIN 索引, 用于更大的数据

块范围索引(BRIN)专注于一些类似 SP-GiST 的情形,它们最好用在当数据有一些自然排序,并且往往数据量很大时。如果有一个以时间为序的 10 亿条的记录,BRIN 也许就能派上用场。如果你正在查询一组很大的有自然分组的数据,如有几个邮编的数据,BRIN 能帮你确保相近的邮编存储在磁盘上相近的地方。

当你有一个非常大的比如以日期或邮编排序的数据库, BRIN 索引可以让你非常快的跳过或排除一些不需要的数据。此外,与整体数据量大小相比,BRIN 索引相对较小,因此,当你有一个大的数据集时,BRIN 索引就可以表现出较好的性能。

Hash 索引, 总算不怕崩溃了

Hash 索引在 Postgres 中已经存在多年了,但是,在 Postgres 10 发布之前,对它们的使用一直有个巨大的警告,它不是 WAL-logged 的。这意味着如果你的服务器崩溃,并且你无法使用如 wal-g[9] 故障转移到备机或从存档中恢复,那么你将丢失那个索引,直到你重建它。 随着 Postgres 10 发布,它们现在是 WAL-logged 的,因此,你可以再次考虑使用它们 ,但是,真正的问题是,你应该这样做吗?

Hash 索引有时会提供比 B-Tree 索引更快的查找,并且创建也很快。最大的问题是它们被限制仅用于“相等”的比较操作,因此你只能用于精确匹配的查找。这使得 hash 索引的灵活性远不及通常使用的 B-Tree 索引,并且,你不能把它看成是一种替代品,而是一种用于特殊情况的索引。

你该使用哪个?

我们刚才介绍了很多,如果你有点被吓到,也很正常。 如果在你知道这些之前, CREATE INDEX 将始终为你创建使用 B-Tree 的索引,并且有一个好消息是,对于大多数的数据库, Postgres 的性能都很好或非常好。 :) 如果你考虑使用更多的 Postgres 特性,下面是一个当你使用其它 Postgres 索引类型的备忘清单:

◈ B-Tree - 适用于大多数的数据类型和查询
◈ GIN - 适用于 JSONB/hstore/arrays
◈ GiST - 适用于全文搜索和几何数据类型
◈ SP-GiST - 适用于有天然的聚集因素但是分布不均匀的大数据集
◈ BRIN - 适用于有顺序排列的真正的大数据集
◈ Hash - 适用于相等操作,而且,通常情况下 B-Tree 索引仍然是你所需要的。

如果你有关于这篇文章的任何问题或反馈,欢迎加入我们的 slack channel[10]


via: https://www.citusdata.com/blog/2017/10/17/tour-of-postgres-index-types/

作者:Craig Kerstiens[11] 译者:qhwdw 校对:wxy

本文由 LCTT 原创编译,Linux中国 荣誉推出

LCTT 译者
qhwdw 🌟🌟
共计翻译: 7 篇
贡献时间:6 天

推荐文章

< 左右滑动查看相关文章 >

点击图片、输入文章 ID 或识别二维码直达



登录查看更多
1

相关内容

【论文扩展】欧洲语言网格:概述
专知会员服务
6+阅读 · 2020年3月31日
德勤:2020技术趋势报告,120页pdf
专知会员服务
190+阅读 · 2020年3月31日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
AI掘金志
7+阅读 · 2019年7月8日
文本分析与可视化
Python程序员
9+阅读 · 2019年2月28日
Python文本预处理:步骤、使用工具及示例
十分钟读懂python的“数据库”语言
Python技术博文
3+阅读 · 2017年11月9日
用 Scikit-Learn 和 Pandas 学习线性回归
Python开发者
9+阅读 · 2017年9月26日
【知识图谱】如何构建知识图谱
产业智能官
134+阅读 · 2017年9月19日
python pandas 数据处理
Python技术博文
4+阅读 · 2017年8月30日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
ViZDoom Competitions: Playing Doom from Pixels
Arxiv
5+阅读 · 2018年9月10日
Relational recurrent neural networks
Arxiv
8+阅读 · 2018年6月28日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
3+阅读 · 2018年3月5日
VIP会员
相关资讯
已删除
AI掘金志
7+阅读 · 2019年7月8日
文本分析与可视化
Python程序员
9+阅读 · 2019年2月28日
Python文本预处理:步骤、使用工具及示例
十分钟读懂python的“数据库”语言
Python技术博文
3+阅读 · 2017年11月9日
用 Scikit-Learn 和 Pandas 学习线性回归
Python开发者
9+阅读 · 2017年9月26日
【知识图谱】如何构建知识图谱
产业智能官
134+阅读 · 2017年9月19日
python pandas 数据处理
Python技术博文
4+阅读 · 2017年8月30日
Top
微信扫码咨询专知VIP会员