深度学习自学指南:6个月,从基础知识到模型构建

2018 年 2 月 5 日 量子位 专注报道AI
原作:Bargava
安妮 编译自 Medium
量子位 出品 | 公众号 QbitAI

给你6个月的时间开始学习深度学习,能够达到怎样的程度?

在这篇文章中,数据科学培训老师Bargava就带你半年入门深度学习。

在这份攻略中,我将给大家讲讲零基础入门深度学习可行性强的资料和学习方法。当然,虽说的零基础,但也有一个小门槛,你需要满足以下条件:

  • 在接下来的6个月中,每天花费10-20小时学习

  • 已经具备一些编程技巧,懂一些Python和云的基础知识

  • 有一些数学基础(代数、几何等)

  • 有一台计算机,并且能联网

量子位在这里补充一句,想入门的小伙伴也可以现在开始准备英语了,毕竟……这些课程都是英文的。

第一阶段

如果想学开车,应该坐上车通过模拟真实开车环境学习,而不是首先了解内燃机和离合器的工作原理。学习深度学习亦是如此,我们需要遵循这种自上而下的学习方法。

推荐fast.ai上的教程Practical Deep Learning for Coders—Part 1。这个课程需要学习4到6周的时间,并且包含一个云端运行代码的session。

不如就从这个课程开始入手吧。

当然,也有一些其他不错的服务平台可供你选择,包括Paperspace、亚马逊AWS、谷歌云平台(GCP)、Crestle和Floydhub等。

但切记,现在还没到开始构建模型的时候。

Practical Deep Learning for Coders地址:

http://www.fast.ai/

第二阶段

是时候了解一些基础知识了。在这个阶段,你需要学习微积分和线性代数。

MIT的Big Picture of Calculus课程可以帮你快速概览微积分基础知识。

对于线性代数,MIT知名教授Gilbert Strang的OpenCourseWare是个不二选择。

学习完上面两门课程后,推荐你阅读旧金山大学科学家、fast.ai联合创始人Jeremy Howard的Matrix Calculus For Deep Learning。

Big Picture of Calculus地址:

https://ocw.mit.edu/resources/res-18-005-highlights-of-calculus-spring-2010/highlights_of_calculus/big-picture-of-calculus/

OpenCourseWare地址:

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

Matrix Calculus For Deep Learning地址:

http://parrt.cs.usfca.edu/doc/matrix-calculus/index.html

第三阶段

经过前面两个基础夯实阶段,现在我们有时间贯彻上面提到的自下而上学习法了。

这个阶段推荐大家修一下Coursera上的Deep Learning专项课程,里面包含5门吴恩达创立的deeplearning.ai的课程。

Coursera上“微专业”获取方式和大学修展业很相似,学习课程后也需要完成相关作业。但讲真你值得修一个专业。

理想情况下,根据你目前的学习基础,完成一门课程需要花费一周时间。

deeplearning.ai课程地址:

https://www.coursera.org/specializations/deep-learning

第四阶段

只学习不会玩,聪明的小孩也会变傻。

现在是时候了解深度学习库了,TensorFlow、PyTorch和MXNet等都需要去了解一下,并且可以为你喜欢的问题从头开始构建架构了。

到这里我们可以发现,前三个步骤是在理解深度学习是什么,从第四步开始,你需要学习从头开始实现一个项目,并学习利用各种工具构建模型。

第五阶段

现在,可以去刚刚提到的fast.ai课程的第二部分看看了,也就是Cutting Edge Deep Learning for Coders这一课。这里面包含的问题更高级,你将学习阅读最新的研究论文并且学习去理解它们。

上面的每个阶段都需要4至6周的时间去理解它们。当你按照上面的方法学习了26周后,你会打下坚实的深度学习基础。

Cutting Edge Deep Learning for Coders课程地址:

http://course.fast.ai/part2.html

下一站

之后,你可以学习斯坦福的CS231n: Convolutional Neural Networks for Visual Recognition和CS224d: Deep Learning for Natural Language Processing两门课程了,它们对视觉和NLP的讲解比较深度透彻。

如果有时间,还推荐你读读这本Deep Learning,对巩固理解很有帮助。

CS231n课程地址:

http://cs231n.stanford.edu/

CS224d课程地址

http://cs224d.stanford.edu/

Deep Learning电子书地址:

http://www.deeplearningbook.org/

钻研深度学习是一件乐事,用你的每一天去创造吧。

最后,附原文链接:

https://medium.com/@bargava/how-to-learn-deep-learning-in-6-months-e45e40ef7d48

加入社群

量子位AI社群13群开始招募啦,欢迎对AI感兴趣的同学,加小助手微信qbitbot5入群;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进群请加小助手微信号qbitbot5,并务必备注相应群的关键词~通过审核后我们将邀请进群。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态


登录查看更多
5

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
《深度学习》圣经花书的数学推导、原理与Python代码实现
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
专知会员服务
110+阅读 · 2019年10月26日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
我的推荐系统入门经验~
大数据技术
39+阅读 · 2019年9月19日
PyTorch  深度学习新手入门指南
机器学习算法与Python学习
9+阅读 · 2019年9月16日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
11+阅读 · 2018年5月14日
【教程】如何从零开始构建深度学习项目?
七月在线实验室
7+阅读 · 2018年4月23日
7本最佳深度学习书籍,总有一本适合你
人工智能头条
6+阅读 · 2018年3月9日
如何用 3 个月零基础入门机器学习?
AI研习社
6+阅读 · 2017年9月27日
干货|7步让你从零开始掌握Python机器学习!
全球人工智能
8+阅读 · 2017年9月24日
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2019年9月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
7+阅读 · 2019年4月8日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
22+阅读 · 2018年8月30日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
VIP会员
相关VIP内容
《深度学习》圣经花书的数学推导、原理与Python代码实现
《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
谷歌机器学习速成课程中文版pdf
专知会员服务
145+阅读 · 2019年12月4日
【开源书】PyTorch深度学习起步,零基础入门(附pdf下载)
专知会员服务
110+阅读 · 2019年10月26日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
我的推荐系统入门经验~
大数据技术
39+阅读 · 2019年9月19日
PyTorch  深度学习新手入门指南
机器学习算法与Python学习
9+阅读 · 2019年9月16日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
11+阅读 · 2018年5月14日
【教程】如何从零开始构建深度学习项目?
七月在线实验室
7+阅读 · 2018年4月23日
7本最佳深度学习书籍,总有一本适合你
人工智能头条
6+阅读 · 2018年3月9日
如何用 3 个月零基础入门机器学习?
AI研习社
6+阅读 · 2017年9月27日
干货|7步让你从零开始掌握Python机器学习!
全球人工智能
8+阅读 · 2017年9月24日
相关论文
A Survey on Bayesian Deep Learning
Arxiv
63+阅读 · 2020年7月2日
Arxiv
15+阅读 · 2019年9月11日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
7+阅读 · 2019年4月8日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
22+阅读 · 2018年8月30日
The Matrix Calculus You Need For Deep Learning
Arxiv
12+阅读 · 2018年7月2日
Top
微信扫码咨询专知VIP会员