边缘计算当前没有准确定义,从 IT 云计算领域视角,边缘计算被看作中心云计算的拓展。边缘计算产业联盟对边缘计算的定义:“在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智能服务,满足行业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求”。从 CT 电信领域视角,边缘计算最初也被称为移动边缘计算(MEC)。欧洲电信标准协会(ETSI)对 MEC 的定义:“移动边缘计算在移动网络的边缘、无线接入网(RAN)的内部以及移动用户的近处提供了一个 IT 服务环境以及云计算能力”。
边缘计算生态参与者众多,云厂商、设备厂商、运营商三大关键服务商方以及一些新型 AI 服务商等,都是从各自现有优势延伸,拓展更多客户及市场空间。设备商借助物联网逐渐构建单一功能的专业云;云厂商从中心化的公有云开始下沉,走向分布式区域云,区域云之间通过云联网打通,形成一个覆盖更大的云。运营商在互联网时代被公有云及繁荣的移动应用完全屏蔽只能充当管道,但在边缘计算时代,业务及网络定义边缘计算,运营商重新回归焦点,不可替代。
真正的挑战在基础镜像及应用镜像下发,当前的基础镜像及业务镜像,即使在中心云,依然在探索各种技术来优化镜像快速分发的瓶颈;尤其是边缘的 AI 应用,一般都是由推送应用+模型库构成,推算应用的镜像相对较小,模型库的体积就非常,同时模型库随着自学习还需要频繁的更新,如果更高效的更新模型库,需要更多技术及方案来应对。
(3)边缘资源和算力
边缘的资源情况需要细分场景,针对运营商网络边缘,面向消费者的边缘计算,资源相对比较充足,最大的挑战是资源共享及隔离;针对实体产业的边缘,都会有不小的 IDC 支持,边缘资源非常充足,足以将整个云原生体系下沉;针对智能设备边缘,资源相对比较稀缺,但一般都会通过一个智能边缘盒子,一端连接设备,一端连接中心管控服务,从上图的 AI 边缘盒子来看,整体配置提升速度较快,长期来看,边缘的算力快速增强以此来满足更复杂更智能化的场景需求。