跑得好好的Java进程,怎么突然就瘫痪了?

2019 年 11 月 27 日 阿里技术

阿里妹导读:Java能成为应用最广泛的语言,和他的内存托管机制是分不开的。很多人眼中,Java虚拟机是透明的,只需知道核心api的用法,便可以专注于实现具体业务,然后依赖Java虚拟机运行甚至优化应用。


你是否有过这样的经历,跑得好好的Java进程,突然就瘫痪了。过于依赖Java虚拟机导致我们对问题无从下手,问题反复出现影响开发效率。其实,多数Java进程瘫痪的原因可以从java虚拟机层面找到原因,本文列举出导致Java进程瘫痪的一些共性原因,供大家交流和学习。


一、内存回收一直是java的痛点


用Java无法做出类似Redis这样的产品。java的内存回收机制使我们在编写代码时不需要关注对象的回收,同时加大了内存回收的消耗,标记复制需要做内存拷贝,标记清除算法则需要stop the world。所以我们在使用缓存的时候,量稍微大一些就需要借助类似Redis这样的中间件帮我们处理了。作为Javaer,我们享受了自动内存回收的安逸,同时也需要多了解下内存优化的方法。

二、为什么fgc停不下来了

1.什么情况下会gc

为了了解我们的系统为什么会不停fgc,我们需要先了解一下系统什么情况下会gc。在jvm层面,当我们new一个对象的时候,jvm会先在堆区分配对象需要的内存,这个时候如果内存不够的话,就需要gc了,gc的返回结果就是对象的空间地址。jvm会先进行ygc,也就是我们通常说的标记复制,如果ygc之后依然申请不到空间,就会进行fgc了。同理,如果fgc之后依然没有足够的空间,就会循环的进行fgc,直到申请到足够的空间。


2.导致不停的fgc的原因

如上文所讲,fgc有可能发生在你的每一行代码。如果fgc之后依然没有足够的空间,就会不停的fgc,直到申请到足够的空间。同时JVM会限制在抛出OutOfMemory错误之前在GC中花费的VM时间的比例。系统频繁FGC大致有五种情况:

  • 内存泄漏

  • 请求处理变慢导致同时申请内存的线程太多

  • metaspace 耗尽

  • 常量池将堆区占满

  • 堆外内存耗尽

       
1w,正常情况下处理一个请求的时间是1ms,那同一时刻并行的请求数量仅为10。如果性能发生抖动,每个请求处理的时间增加到100ms,那同一时刻并行的请求数量就会增加到100个。每个线程在处理请求的时候都会new一些对象出来,长时间存活的线程会造成类似内存泄漏的效果,将系统的内存耗尽。同时fgc也会加剧系统性能的开销,使系统变得更慢,产生雪崩。
 
三、如何让系统fgc之后仍然能活下来

1.杜绝内存泄漏

内存泄漏造成系统瘫痪的频率很高,有些系统定时从数据库拉取配置信息缓存到集合中,但是set不小心写成了list,最终在新增元素的时候内存溢出了。养成良好的编程习惯,多关注些细节,就能避免很多未知的问题。

2.并发限制:防止系统被撑死

每台服务器都有并行处理请求的上限,不管请求处理的多快,超过上限之后就会被撑死,对高并发的请求做好并发数限制是保持系统稳定的必要条件。需要注意的是,有一些系统在拒绝过多的请求时,也会做一些降级逻辑,降级逻辑也是有性能开销的,同样需要做并发限制,如果降级的请求超过并发限制,将不进行降级逻辑直接抛出异常。我们可使用的限流组件有很多,推荐我们阿里自研的Sentinel 和 Netflix开源的Hystrix。

3.自适应限流:防止系统被摸死

我们需要自适应限流有两个原因:

a. 每台服务器所处的环境是不一样的

有些服务器和离线计算的vm混部在一起,有些部署在实体机,有些部署在新老型号的机器上,每台服务器能承受的qps并不完全一样。统一配置分布式系统中每台服务器限流阀值,要么发挥不出每台服务器应有的作用,要么在高qps的情况下一些比较慢的服务器宕机,所以用服务器作为限流粒度是最合适的。

b.设置了正确的限流阀值,也可能被摸死

当单机承受的QPS 6~20倍于限流的流量时,拒绝一次请求的开销就无法忽略不记了。譬如春晚活动有些系统设置了正确的限流也被6~20倍于限流的流量冲垮。这种死法称为被摸死。应对这种情况,我们可以做的是在受到6~20倍的大流量时,动态减少限流的阀值。比如系统最开始接受1000qps,5000的拒绝流量过来会把系统摸死,这个时候我们调整系统的阀值,限流设置到100,被摸死的阀值就可以高一些,这样就算有6000个请求进来,我们系统也可以保证活下来。


4.异常流量监控:防止长尾请求拖垮系统

我们盯系统监控的时候通常会关注99分位的数据,但如果设置了合理的限流,系统依然被流量打挂,就要从那百分之一的长尾数据入手了。有些长尾数据对系统的影响会非常大。想象如果一个put请求传过来几十兆的数据,对java是极为不友好的,很有可能产生fgc,让请求变慢,导致一系列问题。
 
总之,磨刀不误砍柴工,当我们的系统因为fgc一次又一次重启的时候,不如花时间了解下系统产生性能问题的原因,将产生问题的那根针拔掉,晚上睡个安稳觉,白天更加充满活力的挖新坑。希望每个程序员手里都是一个稳定的系统。

参考资料:
jvm调优总结:
https://hllvm-group.iteye.com/group/wiki/?category_id=301
诺亚(Noah)自适应限流 稳定性利器 :
https://www.atatech.org/articles/149208



那些年,人们问王坚博士的33个问题

近日,阿里王坚当选院士,王坚是如何看待中国技术的?他对于技术创新和布局又有什么样的思考?我们整理了这十年间关于王坚博士的经典采访,为你揭晓他作为一名顶尖技术人的思考。识别下方二维码或点击文末“阅读原文”了解真相



你可能还喜欢
点击下方图片即可阅读

什么技能产品经理不会提,但技术人必须懂?


如何回答性能优化”,才能打动阿里面试官?




关注「阿里技术」
把握前沿技术脉搏



戳这里,听人们问王坚博士的33个问题。
登录查看更多
0

相关内容

【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
77+阅读 · 2020年4月24日
【2020新书】如何认真写好的代码和软件,318页pdf
专知会员服务
64+阅读 · 2020年3月26日
【图神经网络(GNN)结构化数据分析】
专知会员服务
116+阅读 · 2020年3月22日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
《代码整洁之道》:5大基本要点
专知会员服务
50+阅读 · 2020年3月3日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
96+阅读 · 2019年12月4日
在K8S上运行Kafka合适吗?会遇到哪些陷阱?
DBAplus社群
9+阅读 · 2019年9月4日
亿级订单数据的访问与存储,怎么实现与优化?
码农翻身
16+阅读 · 2019年4月17日
Linux挖矿病毒的清除与分析
FreeBuf
14+阅读 · 2019年4月15日
说说我的老同事,前端大神程劭非
余晟以为
17+阅读 · 2019年1月14日
一天精通无人中级篇:遥控器协议 S-BUS
无人机
52+阅读 · 2018年12月20日
Flink 靠什么征服饿了么工程师?
阿里技术
6+阅读 · 2018年8月13日
Python 杠上 Java、C/C++,赢面有几成?
CSDN
6+阅读 · 2018年4月12日
Python为啥这么牛?
Python程序员
3+阅读 · 2018年3月30日
号称“开发者神器”的GitHub,到底该怎么用?
算法与数据结构
4+阅读 · 2018年3月29日
Spark的误解-不仅Spark是内存计算,Hadoop也是内存计算
The Evolved Transformer
Arxiv
5+阅读 · 2019年1月30日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
6+阅读 · 2018年2月7日
VIP会员
相关资讯
在K8S上运行Kafka合适吗?会遇到哪些陷阱?
DBAplus社群
9+阅读 · 2019年9月4日
亿级订单数据的访问与存储,怎么实现与优化?
码农翻身
16+阅读 · 2019年4月17日
Linux挖矿病毒的清除与分析
FreeBuf
14+阅读 · 2019年4月15日
说说我的老同事,前端大神程劭非
余晟以为
17+阅读 · 2019年1月14日
一天精通无人中级篇:遥控器协议 S-BUS
无人机
52+阅读 · 2018年12月20日
Flink 靠什么征服饿了么工程师?
阿里技术
6+阅读 · 2018年8月13日
Python 杠上 Java、C/C++,赢面有几成?
CSDN
6+阅读 · 2018年4月12日
Python为啥这么牛?
Python程序员
3+阅读 · 2018年3月30日
号称“开发者神器”的GitHub,到底该怎么用?
算法与数据结构
4+阅读 · 2018年3月29日
Spark的误解-不仅Spark是内存计算,Hadoop也是内存计算
Top
微信扫码咨询专知VIP会员