2019 年 Reddit 机器学习板块 17 个最佳项目:最新代码、资源应有尽有

2020 年 1 月 5 日 极市平台

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~


来源:量子位@微信公众号


2019年刚过去。国外最热论坛Reddit的机器学习板块,也为大家提供了一个优秀的学习讨论场所。

那么,在过去的一年Reddit上关注度最高的帖子有哪些呢?

一位来自非洲的数据分析师,总结了机器学习板块上点赞数最高的17篇项目、论文和Demo,希望你能从这些帖子中获得启发。


无监督图到图的转换(913赞)

这是来自英伟达的研究,它让AI也可以像人类一样,只需少量的样本,即可实现从图像到图像的转换。

该模型通过结合对抗训练方案和新颖的网络设计来实现这种快速生成能力。

比如,我们有了一张小狗的动图,和其他不同动物的静态图像,FUNIT就能得到动作与之同步的各种动图。

GitHub地址:
https://github.com/NVlabs/FUNIT


生成自定义二次元妹子(521赞)


作者提出了一种能够绘制动漫的神经网络 Waifu自动贩卖机 ,其特点是可以让你更具需求生成自己喜欢的二次元妹子,并在此基础上生成你喜欢的动漫。

网站地址:
https://waifulabs.com/


最大数据集资源列表(499赞)

作者汇总了一系列机器学习数据集,减少大家在线查找数据集的时间。数据集按各种任务或领域进行细分,包括:NLP、自动驾驶、质量检查、音频和医疗等等。

网站地址:
https://www.datasetlist.com/


48万条用于NLP的影评(464赞)

这是作者在电影评论网站“烂番茄”上收集的48万条评论,对NLP任务非常有用。

GitHub地址:
https://github.com/nicolas-gervais/6-607-Algorithms-for-Big-Data-Analysis/blob/master/scraping%20all%20critic%20reviews%20from%20rotten%20tomatoes

你也可以到Google云盘上直接下载:
https://drive.google.com/file/d/1N8WCMci_jpDHwCVgSED-B9yts-q9_Bb5/view


自动猫门(464赞)

这是一个给猫奴们的福利。如果猫的嘴里叼着东西,猫们将自动锁定15分钟,防止猫将死老鼠等东西带进房屋。

这个装置将摄像头连接到猫的门上,然后应用机器学习来检查猫的嘴里是否有东西,来做到这一点。

视频地址:
https://www.youtube.com/watch?v=1A-Nf3QIJjM


基于点云生成3D场景图(415赞)

作者提出了一种基于点的新方法来对复杂场景进行建模,它使用原始点云作为场景的几何表示。

然后,该方法使用可以学习的神经描述编码扩充每个点,神经描述对局部几何形状和外观进行编码。通过将点云的栅格化从新视角传递到深度渲染网络中,可以获得新的场景视图。

论文地址:
https://arxiv.org/abs/1906.08240


AdaBound优化器(402赞)

这是两个中国本科生提出的一种新的优化器,他们分别来自北大和浙大。这篇文章已经被ICLR 2019收录,并且让领域主席赞不绝口。

AdaBound兼顾了模型训练中的速度和性能。

在模型训练开始时,AdaBound的行为类似于Adam,速度很快,并在结束时转换为SGD,保证模型收敛到损失更低的最优解上。

论文介绍:
https://www.luolc.com/publications/adabound/

代码实现:
https://github.com/Luolc/AdaBound


AI在德州扑克中击败人类(390赞)

由Facebook提出的Pluribus,是第一个能够在六人无限注德州扑克中打败人类专家的AI机器人。这也是AI第一次在超过两个或两个团队的复杂游戏中击败顶级人类玩家。

Pluribus之所以成功,是因为它可以非常有效地处理两名以上玩家的不完美信息博弈挑战。它使用自我对战来教自己如何取胜,没有任何示范或策略指导。

官方介绍:
https://ai.facebook.com/blog/pluribus-first-ai-to-beat-pros-in-6-player-poker/


各种ML模型的NumPy实现(388赞)

numpy-ml是机器学习模型、算法和工具的集合。这些模型、算法和工具专门用NumPy和Python 标准库编写。

GitHub地址:
https://github.com/ddbourgin/numpy-ml


17种Deep RL算法的PyTorch实现(388赞)

作者给出了17种深度强化学习算法的PyTorch实现。包括的某些实现包括DQN,DQN-HER,Double DQN,REINFORCE,DDPG,DDPG-HER,PPO,SAC,离散SAC,A3C,A2C等等。

GitHub地址:
https://github.com/p-christ/Deep-Reinforcement-Learning-Algorithms-with-PyTorch


100万张AI生成的假脸(373赞)

作者使用英伟达的StyleGAN生成了100万张假脸,这些假脸和真人对比起来几乎无异。

下载地址:
https://archive.org/details/1mFakeFaces


赛道周围的神经网络赛车(358赞)

作者设计了一个小游戏,教神经网络驾驶汽车。

这是一个简单的网络,具有固定数量的隐藏节点(没有NEAT),并且没有偏差。然而经过短短几代的训练后,它已经能成功让汽车快速安全地行驶。

视频地址:
https://www.youtube.com/watch?v=wL7tSgUpy8w


将ML模型转化成本地代码(345赞)

一些边缘设备硬件简单,比如只有单片机,无法安装深度学习软件库,怎么办?

m2cgen提供了解决办法,它是一个轻量级的库。m2cgen提供了一种简便的方法将经过训练的ML模型转换为本地代码,支持Python,C,Java,Go,JavaScript,Visual Basic,C#等语言。

m2cgen当前支持的模型如下:

图片: https://uploader.shimo.im/f/65ReHnCspdoAC8gV.png

GitHub地址:
https://github.com/BayesWitnesses/m2cgen/


探索神经网络的损失情况(339赞)

这篇帖子是关于在神经网络的损失曲面中找到不同的图案。通常,围绕最小值的地图看起来像是一个坑,周围是随机的丘陵和山脉,但也存在更有意义的坑,如下图所示:

作者发现我们几乎可以找到自己喜欢的任何奇怪地图的最小值。有趣的是,找到的地图即使对于测试集也仍然有效,因此它很有可能对于整个数据分布仍然有效。

论文地址:
https://arxiv.org/abs/1910.03867

源代码:
https://github.com/universome/loss-patterns


基于GPT-2的Reddit回帖机器人(343赞)

作者构建了一个基于GPT-2的Reddit回帖机器人。可以通过回复任何带有“ gpt-2 finish this”的评论来使用这个回帖机器人。

源代码:
https://github.com/shevisjohnson/gpt-2_bot


将任何视频插值成动作(332赞)

这是由英伟达提出的一种算法,可以将30帧视频变成240帧的慢动作视频,有人用PyTorch实现了这个算法。

论文地址:
https://people.cs.umass.edu/~hzjiang/projects/superslomo/

源代码:
https://github.com/avinashpaliwal/Super-SloMo


NLP的预训练模型库(306赞)

这是来自创业公司Hugging Face的汇总,最近这家公司刚获得1500万美元融资。

该项目汇总了基于Transformer的各种最新的NLP模型,包括BERT、GPT-2、RoBERTa、XLM、DistilBert、XLNet等32中预训练模型,覆盖了超过100种语言。

而且这个库里的模型数量仍在持续增加中。

GitHub地址:
https://github.com/huggingface/transformers

这就是2019年Reddit机器学习板块最受欢迎的项目,不知道你最喜欢哪一篇,觉得哪一篇对你帮助最大呢?



-End-

提示:极市元旦福利(https://lucky.nocode.com/v2/s/7SPah7gtyjP已开奖,还有两位小伙伴未填写地址,请在周三前填写完毕



*延伸阅读





CV细分方向交流群


添加极市小助手微信(ID : cv-mart),备注:研究方向-姓名-学校/公司-城市(如:目标检测-小极-北大-深圳),即可申请加入目标检测、目标跟踪、人脸、工业检测、医学影像、三维&SLAM、图像分割等极市技术交流群(已经添加小助手的好友直接私信),更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流一起来让思想之光照的更远吧~



△长按添加极市小助手


△长按关注极市平台


觉得有用麻烦给个在看啦~  


登录查看更多
0

相关内容

【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
108+阅读 · 2020年6月27日
【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
专知会员服务
109+阅读 · 2020年3月12日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
35+阅读 · 2020年1月10日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
2019热门开源机器学习项目汇总
专知
9+阅读 · 2020年1月3日
干货 | 适合NLP初学者的8个免费资源分享
THU数据派
4+阅读 · 2019年7月2日
机器学习开源项目Top10
AI100
4+阅读 · 2019年1月20日
资源 | 一份非常全面的开源数据集
黑龙江大学自然语言处理实验室
10+阅读 · 2018年9月7日
【资源】史上最全数据集汇总
七月在线实验室
18+阅读 · 2018年4月24日
史上最全TensorFlow学习资源汇总
深度学习世界
7+阅读 · 2018年4月12日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
14+阅读 · 2019年11月26日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
4+阅读 · 2018年4月17日
VIP会员
相关VIP内容
【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
108+阅读 · 2020年6月27日
【资源】100+本免费数据科学书
专知会员服务
107+阅读 · 2020年3月17日
专知会员服务
109+阅读 · 2020年3月12日
【2020新书】图机器学习,Graph-Powered Machine Learning
专知会员服务
339+阅读 · 2020年1月27日
近期必读的7篇 CVPR 2019【视觉问答】相关论文和代码
专知会员服务
35+阅读 · 2020年1月10日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
2019热门开源机器学习项目汇总
专知
9+阅读 · 2020年1月3日
干货 | 适合NLP初学者的8个免费资源分享
THU数据派
4+阅读 · 2019年7月2日
机器学习开源项目Top10
AI100
4+阅读 · 2019年1月20日
资源 | 一份非常全面的开源数据集
黑龙江大学自然语言处理实验室
10+阅读 · 2018年9月7日
【资源】史上最全数据集汇总
七月在线实验室
18+阅读 · 2018年4月24日
史上最全TensorFlow学习资源汇总
深度学习世界
7+阅读 · 2018年4月12日
Top
微信扫码咨询专知VIP会员