群智协同计算:研究进展与发展趋势

2018 年 2 月 1 日 中国计算机学会 协同计算专委

CCF于1月11日发布了最新一期《中国计算机科学技术发展报告》,对可群智协同计算、软件智能化开发技术等11个方向的研究进展做了详细介绍和讨论。我们将分期分享报告中的精彩内容,加入CCF会员登录CCF官网,可在数字图书馆栏目下载和浏览。



大规模的互联网用户群体不仅是各类应用服务的使用者,更是网络空间大数据和应用服务的贡献者,其构成了支撑大量成功应用的群智资源。在此基础上发展出一种新型的计算模式,我们称之为群智协同计算,其核心在于对开放网络环境下的群智资源进行有效管理和协同利用以实现群体智能的最大化。


来自人工智能、大数据、计算机协同工作和人机交互等领域的研究人员从不同的学术视角对此开展了研究,提出了众包、人计算、群体智能和社会计算等研究方向,同时工业界也推出了大量支撑群智协同的平台与应用。从技术上看,群智协同计算在协同计算的基础上融合了大数据、统计机器学习等人工智能新技术。本报告总结了群智协同计算的主要研究问题,对国内外的最新研究进展进行了综述和对比分析,并对该方向未来的发展趋势和主要科学问题进行了展望。

国内研究进展


近年来,国内的学术界对互联网上涌现的群智协同现象十分关注,从人工智能、软件开发、大数据处理和协同计算等多个角度开展了大量的研究,特别是相关方向得到了国家的高度重视,已经列入国家重大科技计划。


北京航空航天大学李未院士等提出推进“群体智能”相关研究,被列入2016年中国工程院发布的《中国人工智能2.0计划》,并成为国家“科技创新2030”重大计划的重要内容。


在此背景下,2017年7月国务院印发新一代人工智能发展规划,目标是初步建成人工智能技术标准、服务体系和产业生态链,培育若干全球领先的人工智能骨干企业,人工智能核心产业规模超过1500亿元,带动相关产业规模超过1万亿元,其中明确对群体智能的研究进行了规划:在基础理论方面,群体智能理论重点突破群体智能的组织、涌现、学习的理论与方法,建立可表达、可计算的群智激励算法和模型,形成基于互联网的群体智能理论体系;在关键技术方面,重点突破基于互联网的大众化协同、大规模协作的知识资源管理与开放式共享等技术,建立群智知识表示框架,实现基于群智感知的知识获取和开放动态环境下的群智融合与增强,支撑覆盖全国的千万级规模群体感知、协同与演化;在创新平台方面,群体智能服务平台重点建设基于互联网大规模协作的知识资源管理与开放式共享工具,形成面向产学研用创新环节的群智众创平台和服务环境。


在软件开发方面,北京航空航天大学的李未院士早在几年前就提出开展群体软件工程的研究。围绕群体软件工程的研究,国家自然科学基金委、科技部等先后立项了多个群智化软件开发方法的重大/重点项目。北京理工大学的梅宏院士牵头承担了基金委重大项目“基于互联网群体智能的软件开发方法”,依托北京理工大学、北京大学、国防科学技术大学、南京大学和北京航空航天大学组成的核心团队重点突破互联网环境下面向软件开发的群体智能的形成、度量与调控的机理机制等关键科学问题,建立互联网环境下以大规模群体协同、智力汇聚、信誉追踪、持续演化为基本特征的新型软件开发模式。国防科学技术大学的王怀民教授牵头承担了国家863计划重点项目可信的国家软件资源共享与协同生产环境,带领国防科学技术大学、北京大学、北京航空航天大学和中科院软件所等构成的核心团队,突破了一系列软件开发的群体化方法,并完成了大型群体化软件平台Trustie的研制,开展了大规模的应用实践,相关成果获得2015年国家技术发明二等奖。


在大数据方面,清华大学的刘云浩教授提出群智感知计算,借助大规模的用户群体实现大范围的数据收集与感知,西北工业大学於志文教授和上海交通大学的朱燕民教授等在群智感知方面均开展了大量的研究工作。清华大学的李国良副教授带领的团队在基于众包的数据管理方面开展了大量研究,并且构建了众包任务处理平台ChinaCrowd。此外,香港科技大学的陈雷教授、北京航空航天大学的童咏昕副教授在时空数据众包管理方面做出了一系列高水平的成果,所研发的gMission平台得到了国际社会的关注。北京航空航天大学的怀进鹏院士、刘旭东教授和孙海龙副教授等围绕数据标注和知识获取等问题提出了一系列众包工人能力评估与结果汇聚方法,改进了众包任务的处理质量。


在协同计算领域,复旦大学顾宁教授团队和兰州大学胡斌教授团队近年来在群智协同创作研究领域取得了较为突出的研究成果。复旦大学顾宁教授团队的研究重点关注群智社区协同创作质量控制策略和面向弱势群体的群智协同创作行为分析及系统设计。


在群智社区协同创作质量控制策略研究方面,其团队先后研究了在线问答社区中的协同编辑功能给在线问答社区用户协同创作带来的优势和缺陷、在线协作项目的同行评审过程中各类冲突管理方式的有效性等。


而在面向弱势群体的群智协同创作行为分析及系统设计研究方面,其团队重点研究了影响老年人、残疾人等弱势群体融入社会、参与社会协作的因素,并提出了相应的系统设计策略。代表性的研究有中国背景下的老人DIY和创客文化、影响老人使用ICT参与协同创作的因素、残疾人互助行为对残疾人群体融入社会、参与社会协作的作用以及抑郁症病人认知、治疗和社会参与影响因素等。


兰州大学胡斌教授团队的研究主要围绕用户在参与群智协同创作过程中存在的潜在抑郁风险和面向脑电数据的情绪分析展开。


在群智协同用户潜在抑郁风险预警研究方面,其团队着重分析轻度抑郁症患者的认知行为表现和认知功能障碍,通过研究抑郁症患者与正常人群在面部表情刺激过程中产生的脑电活动以期促进轻度抑郁症的早期检测,同时提出了基于语言类型和情绪的新的抑郁症检测方法(STEDD),以促进抑郁疾病患者的康复进程,增强其社会参与及社会协作能力。


在群智协同用户情感分析研究方面,其团队根据一个增强的脑电数据情绪分析系统研究脑电数据和情绪状态间的相关性,另外深入探究了生理信号作为多目标情感识别的可靠途径的潜力。通过上述研究,实现对于用户在群智协同过程中的情绪捕捉和情感分析。


华南师范大学的汤庸教授及其研究团队多年来从事学术社交网络与协同计算的科研工作,并创建了著名的学术协同平台“学者网”,提供一个面向学者的社交网络和教学科研协作平台,其主要功能有个人空间、学术圈、科研团队网站、课程教学平台、学术搜索门户与大数据服务等。


目前,学者网已经拥有五万余真实学者用户,这些用户遍布多个国家和地区,用户研究领域覆盖二十几个专业领域。其用户数量大、质量高,为众包协作的应用与发展提供了非常良好的社交环境和研究氛围。


东南大学蒋嶷川教授研究团队研究了社交网络中复杂任务众包的团队形成问题,在这种情况下请求者通常希望聘请一群具有社会关系且可以一起工作的工人。现有的社会团队众包方法主要集中在社会福利最大化的部分,而忽视了工人的策略行为。在实际的众包市场中员工为了最大限度追求自身利益而自私自利,而在传统的研究中通常会鼓励这种行为,从而影响其他工人的参与。


蒋嶷川教授的研究团队提出了一种基于诚实行为保证每个工人最优利益的团队行程机制,该机制对于众包系统的成功至关重要,同时,分别为小规模和大规模的社会团队众包应用开发了两种有效的真实机制(truthful mechanism),针对众包任务的激励机制,设计节俭机制以最低限额采购所需服务来解决低预算问题,设计了两种机制来提供参与的激励并最小化请求者使用的支付,还研究了非协同社交网络中有效的众包团队建立机制。


此外,在支持群智协同创作的交互设计方面,国内研究尚处于起步阶段,清华大学、北京大学、中科院等科研院所取得了一定的研究成果。


文献[92]探究了动作交互过程中用户从事拉伸动作的能力和局限性,在此基础上对拉伸控件的设计提出了建议。


文献[93]使用手臂肌电图将用户动作交互过程中的手势运动轨迹分段化,研究表明该方法能够高精度地细分动作交错过渡过程中的手和手指等细微部位。


文献[94]探究了用户在使用手机编辑文档过程中进行文档导航操作时两种操作技术(flick and ring)的性能,并通过三种输入方法食指输入、笔输入及拇指输入进行了测试。


文献[95]探究了在动作交互过程中不同材质对于用户使用效果的影响,发现低摩擦材料虽然会提升用户操作的流畅性,但会导致较高的错误率,影响用户完成任务的时间。


文献[96]分析了用户在使用智能手表的小键盘输入过程中的偏好及局限性,并提出了改进建议以提升用户输入的精度和效率。


文献[97]提出并实现了一种适用于智能手表文字输入的非触摸式交互技术COMPASS,用户通过旋转智能手表边框并选择游标可进行高效的文字输入。


文献[98]提出了一种名为wrist-to-finger的智能手表输入方法,能够支持通过单手与设备进行交互。


文献[99]探究了用户在使用头戴式交互设备过程中三种文字输入方式TapType、DwellType和GestureType的可行性和局限性,并发现三种方式均易被用户学习和掌握,且疲劳感在可接受的范围。


文献[33]设计实现了一个协同编辑系统,以支持用户之间的协同创作和知识分享。该系统增加了三个特色功能:不同版本映射、多用户操作归纳和其他用户编辑结果测试、评论等。


文献[100]提出了一种1D手势输入方法,能够实现二维输入到1D输入的映射,从而支持一维接口下的手势输入。评估实验表明该方法易被用户学习和掌握,且效率较高。


文献[101]在移动感知系统中引入了一种名为TaskMe的激励机制,以支持动态规划和工人选择。


文献[102]设计了一种适用于移动感知系统的多任务分发框架,传统的任务分发框架仅为单任务选择最优的用户,而该框架能够考虑多任务之间的关系并综合起来生成最优的方案。


文献[103]针对传统的基于触摸屏和计算机视觉的手势交互方法无法应对智能可穿戴设备逐渐趋向小型化和低功耗等问题,提出了一种基于超声波的低功耗鲁棒手势识别方法。

国内外研究进展比较


群智协同计算是随着互联网技术与应用的快速发展而出现的一种新型计算模式。以美国为主要代表的国外学术界和工业界总体上一直引领着互联网技术与应用的发展,因此由以上分析可以看出,无论是在理论模型、关键方法与技术、以及平台和应用方面,国际上的研究工作要早于国内。国外对于大规模用户群智行为研究已形成了较为完整的框架,而国内相关研究尚处于起步阶段,研究方向和研究成果相对局限。从国外研究来看,其研究方向涉及底层的用户行为建模、分析及理解如群智网络中的用户社会关系及社交行为分析等,顶层的群智质量提升策略研究以及中间层的群智交互技术和工具等。而国内对于群智行为的研究则更偏重于技术、方法和系统,重点关注提出支持高效群智协同工作的新技术、新方法,设计和实现支撑大规模用户协同工作的工具、系统和平台。


近年来,由于国家对科研和产业的支持粒度不断加大,国内学术界和产业界对国际上前沿问题和热点应用在快速跟进。特别是,前面提到国家启动了人工智能2.0、群智化软件开发等一大批重大科研计划,在这些科研计划的支持下,国内学者组建了高水平的科研团队,围绕群智协同计算的理论模型、关键技术和系统平台开始了系统的研究。与国内相反,北美和欧洲等科技强国近年来在科研上的投入没有明显增长,这给我们加快推进相关研究,占领国际学术和产业的前沿创造了宝贵的机会。

发展趋势与展望


随着物联网、工业互联网和CPS系统的进一步发展,当前以互联网为核心的网络形态将发生深刻变化,未来的网络将发展为以人、机、物融合的网络信息空间,网络所连接的对象进一步泛化。同时,在大数据和人工智能技术的推动下,智能将成为主要内容。因而,从群智资源的角度来看,资源的规模将更为巨大,群智资源的类型将不仅仅涉及到人群,还包括嵌入机器和物体中的各种智能体。我们认为群智协同计算面临着如下一些发展趋势:


(1)群智资源的多元化。目前的群智协同计算主要关注人群资源,随着人工智能和网络技术的发展,网络信息空间的智能体的类型和数量都会呈现出多元化,为这些群智资源的交互协同将为解决更加复杂的问题提供更好的支撑。而群智资源的多元化必然对群体间协同行为与机制、交互模式以及任务协同处理带来新的挑战,因此,涵盖人群协同、人机协同和机群协同的异构多元化的群智资源协同是群智协同计算未来面临的重要问题。


(2)理论模型的日益完善。在群智协同计算领域,目前大部分研究工作主要是面向具体的应用问题进行方法和技术的设计与实现,尚缺乏统一的数学理论模型对系统及其构成要素进行刻画。例如,以人群资源为例,目前尚无完善的理论模型对人的能力以及相关问题的计算复杂性进行刻画,给定一类任务和一组群智资源,仍然难以估算任务的复杂度和处理效果。 


(3)关键技术的突破。从当前对于群智协同工作的研究成果来看,用户在参与群智协同工作过程中的行为分析和理解、群智协同工作影响因素分析及质量控制、支持大规模群智协同工作的软硬件交互设计仍然是未来一段时间的研究热点。首先,当前对于用户行为分析和理解的研究受限于数据集限制,数据规模不大、数据源单一,采用多源大规模用户数据进行分析势在必行。其次,随着数据规模的增大、数据源的增加,影响群智协同工作质量的内在和外界因素也会增多,发掘这些影响因素并在此基础上提出优化策略也是未来研究的一个重要方向。再次,各种移动、可穿戴设备的出现给群智协同工作提供了新的机遇,设计实现友好的人机交互界面及工具具有重要的研究价值和实际意义。最后,面向特定复杂任务快速组建协同工作的团队、开放协同环境下的隐私保护、恶意行为抵制等都是尚待解决的难点问题。


(4)新型的群智协同平台与应用。随着网络技术、区块链和共享经济的不断发展成熟,群智市场会更加开放,群智协同计算会逐渐从当前以利用人群的闲散时间为主发展为更加职业化的群智市场,甚至可能对当前人力资源的雇佣模式产生变革,形成单人对多个企业的新型多元化雇佣关系。另一方面,当前AMT、CrowdFlower、Freelance等通用群智平台大多假定工人之间是独立的,缺乏对工人之间协同的支持,也难以支持复杂任务的处理。随着群体协同计算技术的发展和新的应用需求的不断出现,必然需要发展新型的群智协同平台与应用模式。

作者介绍


孙海龙 博士,北京航空航天大学计算机学院长聘副教授,博士生导师。CCF高级会员,CCF协同计算专委委员。主要研究方向为网络化软件和群智协同计算。曾获全国优秀博士学位论文奖和CCF优秀博士学位论文奖、国家技术发明奖二等奖2项、教育部科技进步一等奖3项,入选教育部新世纪优秀人才计划和北京市科技新星计划。指导学生获得国际开源软件联盟OW2编程大赛一等奖、IEEE SCC’13最佳学生论文奖。


卢 暾 博士,博士后,美国卡耐基梅隆大学(CMU)公派访问学者,复旦大学计算机科学技术学院副教授。研究方向为CSCW与社会计算,目前主要研究兴趣包括大规模分布式一致性维护算法、在线社区用户行为分析与预测、面向多学科协作的数据世系技术等。承担和参与了多项国家自然科学基金、国家863、重点研发计划项目子课题和上海市项目,相关研究成果主要发表在 CSCW等领域权威学术会议和相关国际国内学报上。目前是CCF高级会员、CCF协同计算专委会常务委员、CCF大数据专家委员会通讯委员、CCF YOCSEF上海学术秘书;CSCWD技术委员会委员(IEEE SMC Society),ACM、ACM SIGCHI和IEEE会员。曾担任领域内多个国际国内学术会议的程序委员会联合主席和出版主席(CSCWD2010)、程序委员会共同主席(ChineseCSCW2017)、程序委员会委员(TASE2010 、ICC2011、CollabTech2014、CSCWD2016、GROUP2018等)和审稿人(CSCW2013、CHI2014、CSCW2017、CHI2017、CSCW2018等);目前也是多个国内外学术期刊的客座编辑(IJCIS)和审稿人(IEEE TSC、IEEET-ASE等))。


李建国 博士,副教授,硕士生导师,CCF协同计算专委会委员,毕业于中山大学计算机软件与理论专业,目前在华南师范大学计算机学院从事大数据、社会网络、协同计算等方面的研究与教学工作,以第一作者和通讯作者共发表论文12篇,其中SCI收录1篇,EI/ISTP收录6篇。主持省级项目1项,广州市项目1项,参与省部、国家级课题多项,作为参与人3次获得广东省科学技术奖二等奖。


顾 宁 博士,复旦大学计算机科学技术学院教授,复旦大学社会计算研究中心主任;担任中国计算机学会理事、协同计算专委会主任、大数据专家委员会委员;上海市计算机学会协同与信息服务专委会主任。长期从事计算机支持的协同工作(CSCW)、协同与社会计算、人机交互、领域大数据分析等方向的研究工作,在协同系统设计、协同环境下的一致性维护技术、大数据用户行为与体验分析、社会与技术交互等方面的研究中有大量成果,基于上述研究构建面向老人和残疾人的服务系统,节能信息管理平台等,应用效果明显。在国际权威学术会议 CSCW、CHI、WWW、GROUP、ICDCS 等发表多篇研究长文,获得多项发明专利,获上海市科技进步一等奖等多项奖励。担任了多个国际和国内会议的大会主席、程序主席和程序委员,以及多个国内外期刊的编委和Guest Editor。多次担任国家自然基金和国家科技部项目会评专家。作为负责人先后承担了国家自然科学基金重点项目、科技部 973 课题以及上海市科委重点项目等。

参考文献


[92] Tian F, Lyu F, Zhang X, et al. An Empirical Study on the Interaction Capability of Arm Stretching[J]. International Journal of Human–Computer Interaction, 2017, 33(7): 565-575.


[93] Chen Y, Su X, Tian F, et al. Pactolus: A Method for Mid-Air Gesture Segmentation within EMG[C]. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM, 2016: 1760-1765.


[94] Tu H, Ren X, Tian F, et al. Evaluation of flick and ring scrolling on touch-based smartphones[J]. International Journal of Human-Computer Interaction, 2014, 30(8): 643-653.


[95] Sun M, Ren X, Tu H, et al. An Investigation Into the Relationship Between Texture and Human Performance in Steering and Gesture Input Tasks[J]. International Journal of Human-Computer Interaction, 2014, 30(8): 654-662.


[96] Yi X, Yu C, Shi W, et al. Is It Too Small?: Investigating the Performances and Preferences of Users when Typing on Tiny QWERTY Keyboards[J]. International Journal of Human-Computer Studies, 2017.


[97] Yi X, Yu C, Xu W, et al. COMPASS: Rotational Keyboard on Non-Touch Smartwatches[C]. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017: 705-715.


[98] Sun K, Wang Y, Yu C, et al. Float: One-Handed and Touch-Free Target Selection on Smartwatches[C]. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017: 692-704.


[99] Yu C, Gu Y, Yang Z, et al. Tap, Dwell or Gesture?: Exploring Head-Based Text Entry Techniques for HMDs[C]. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. ACM, 2017: 4479-4488.


[100] Yu C, Sun K, Zhong M, et al. One-dimensional handwriting: inputting letters and words on smart glasses[C]. Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 2016: 71-82.


[101] Guo B, Chen H, Yu Z, et al. TaskMe: toward a dynamic and quality-enhanced incentive mechanism for mobile crowd sensing[J]. International Journal of Human-Computer Studies, 2017, 102: 14-26.


[102] Wang J, Wang Y, Zhang D, et al. PSAllocator: multi-task allocation for participatory sensing with sensing capability constraints[C]. Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. ACM, 2017: 1139-1151.


[103] 杨晓东, 陈益强, 于汉超, 等. 面向可穿戴设备的超声波手势识别方法[J]. 计算机科学, 2015, 42(10): 20-24.


[33] Zhu Y, Yue S, Yu C, et al. CEPT: Collaborative Editing Tool for Non-Native Authors[C]. ACM Conference on Computer Supported Cooperative Work and Social Computing. ACM, 2017:273-285.


中国计算机学会   

微信号:ccfvoice           

长按识别二维码关注我们


CCF推荐

精品文章


更多内容请点击“阅读原文”访问CCF数字图书馆下载和浏览。


登录查看更多
3

相关内容

大数据安全技术研究进展
专知会员服务
92+阅读 · 2020年5月2日
【人大】大规模知识图谱补全技术的研究进展
专知会员服务
86+阅读 · 2020年5月2日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
2019中国硬科技发展白皮书 193页
专知会员服务
82+阅读 · 2019年12月13日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
121+阅读 · 2019年10月10日
事件知识图谱构建研究进展与趋势
THU数据派
99+阅读 · 2019年12月11日
分布式智能计算系统前沿
中国计算机学会
19+阅读 · 2019年10月8日
解读《中国新一代人工智能发展报告2019》
走向智能论坛
32+阅读 · 2019年6月5日
我国智能网联汽车车路协同发展路线政策及示范环境研究
面向云端融合的分布式计算技术研究进展与趋势
中国计算机学会
19+阅读 · 2018年11月27日
CCF发布2017-2018中国计算机科学技术发展报告
中国计算机学会
17+阅读 · 2018年11月7日
《人工智能标准化白皮书(2018版)》发布|附下载
人工智能学家
17+阅读 · 2018年1月21日
Arxiv
5+阅读 · 2018年9月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
7+阅读 · 2018年3月22日
Arxiv
5+阅读 · 2016年10月24日
VIP会员
相关VIP内容
大数据安全技术研究进展
专知会员服务
92+阅读 · 2020年5月2日
【人大】大规模知识图谱补全技术的研究进展
专知会员服务
86+阅读 · 2020年5月2日
基于深度学习的多标签生成研究进展
专知会员服务
142+阅读 · 2020年4月25日
新时期我国信息技术产业的发展
专知会员服务
70+阅读 · 2020年1月18日
2019中国硬科技发展白皮书 193页
专知会员服务
82+阅读 · 2019年12月13日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
121+阅读 · 2019年10月10日
相关资讯
事件知识图谱构建研究进展与趋势
THU数据派
99+阅读 · 2019年12月11日
分布式智能计算系统前沿
中国计算机学会
19+阅读 · 2019年10月8日
解读《中国新一代人工智能发展报告2019》
走向智能论坛
32+阅读 · 2019年6月5日
我国智能网联汽车车路协同发展路线政策及示范环境研究
面向云端融合的分布式计算技术研究进展与趋势
中国计算机学会
19+阅读 · 2018年11月27日
CCF发布2017-2018中国计算机科学技术发展报告
中国计算机学会
17+阅读 · 2018年11月7日
《人工智能标准化白皮书(2018版)》发布|附下载
人工智能学家
17+阅读 · 2018年1月21日
相关论文
Arxiv
5+阅读 · 2018年9月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
7+阅读 · 2018年3月22日
Arxiv
5+阅读 · 2016年10月24日
Top
微信扫码咨询专知VIP会员