水凝胶可控跳跃研究取得进展

2018 年 11 月 12 日 中科院之声

响应型水凝胶在软湿驱动器、人工肌肉、医疗器械等领域具有广阔的应用前景。水凝胶驱动器一般由响应型水凝胶制备,具有不对称构筑结构,在电、热、光、pH 等刺激作用下,会发生体积或形状变化。通过对器件结构进行精确设计,可实现简单的抓取、释放、行走等动作,但耗时长(一般需要数分钟至数小时)。与工业中常见的电机驱动、液压驱动、气压驱动相比,如何提高水凝胶驱动器驱动能量转化效率、提高驱动速度,是水凝胶驱动器领域亟待解决的关键问题。


肌肉是典型的柔性生物驱动器,通过收缩和快速伸长而产生强大的爆发力,实现跳跃等动作。受此启发,中国科学院宁波材料技术与工程研究所研究员付俊团队发展了一种新策略,利用基底对凝胶形变的约束,积累弹性能,并利用界面不稳定性实现能量的爆发性释放,驱动水凝胶实现可控跳跃。


研究人员制备了粘土交联和增强的温敏双层水凝胶(图1a),通过调控材料配比,可调控各层的临界相容温度(LCST)(图1b)。在反复升温和降温过程中,双层凝胶因各层的溶胀/消溶胀性质差异而发生可逆变形、卷曲(图1c)。在此过程中,因溶胀程度差异而导致凝胶内产生的弹性能得以缓慢释放。


研究发现,纳米复合凝胶在多种金属基底上具有较强的粘附性,与铸铁、铝、不锈钢、铜基板之间的粘附能可分别达到17.6、12.8、12.8、7.6 J/m2(图2)。将凝胶粘附在铝基板上,可承受较大的拉力。在拉伸过程中,随着凝胶发生形变,内部不断积累弹性能;当凝胶内积累的弹性能高于界面粘附能时,凝胶瞬间滑脱,并在40ms内回弹(图3)。


研究人员巧妙地将温度响应行为与界面粘附特性结合,设计制作了具有棘齿结构的金属导轨,利用凝胶与金属之间的黏附作用,通过棘齿结构约束凝胶的形变。在升温过程中,凝胶发生不对称收缩,产生弯曲倾向;而导轨的棘齿结构阻碍凝胶弯曲变形,凝胶内部弹性能逐渐积累。当弹性能超越界面黏附能,凝胶瞬间脱离导轨,弹性能快速释放,驱动凝胶跳跃(图4)。


研究表明,基于这一原理,凝胶的跳跃方向由导轨形状决定,凝胶总是沿着棘齿斜坡斜向上跳。跳跃距离、高度、起跳时间由凝胶的形状和尺寸决定,尖窄的前足有利于减小流体阻力,提高跳跃距离和高度;宽大的后足则意味着需要较多的弹性能克服较大的凝胶/导轨粘附力,导致起跳晚;薄的凝胶对温度变化的形变响应快,起跳早。在典型实例中(图5a),跳跃持续时间910ms,跳跃距离10.6mm,跳跃高度2.4mm。


该研究突破了传统响应型水凝胶的驱动速度受水分子在凝胶网络内扩散速率制约的问题,揭示了一种基于弹性能储存和爆发性释放实现水凝胶快速可控驱动的新策略,为高性能柔性驱动器的发展提供了全新的思路和视角。


近日,该成果以Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers 为题发表在ACS Applied Materials & Interfaces(2018,DOI: 10.1021/acsami.8b16402)。第一作者为副研究员高国荣,通讯作者为付俊。


该工作得到国家自然科学基金(21574145,51603220)和宁波市自然科学基金(2016A610255)项目的资助。


图1 (a)双层水凝胶的结构示意图,(b)凝胶各层平衡溶胀率随温度变化曲线,(c)双层水凝胶可逆弯曲/伸展图像 


图2 (a-b)纳米复合水凝胶从铸铁、铝、不锈钢、铜基底上90°剥离的单位宽度力-位移曲线,(c)平均粘附能 


图3 纳米复合水凝胶在铝基板上的粘附与拉伸-回弹 


图4 温度驱动水凝胶跳跃 


图5 不同构型双层水凝胶的尺寸示意图和跳跃图片 


来源:中国科学院宁波材料技术与工程研究所


温馨提示:近期,微信公众号信息流改版。每个用户可以设置 常读订阅号,这些订阅号将以大卡片的形式展示。因此,如果不想错过“中科院之声”的文章,你一定要进行以下操作:进入“中科院之声”公众号 → 点击右上角的 ··· 菜单 → 选择「设为星标」




登录查看更多
0

相关内容

中国科学院宁波材料技术与工程研究所成立于2004年4月,是中国科学院在浙江布局建立的首家国家级研究机构,是中国科学院在“知识创新工程”试点工作向“创新跨越、持续发展”推进的新阶段,与地方政府共同出资建设的一个新的直属科研机构。不仅填补了当时中科院在全省研究机构中布局的空白,也极大地提升了宁波乃至浙江省的自主创新能力,为宁波乃至浙江新材料产业发展提供了强大的创新动力,已成为全省新材料技术研究的人才、技术和创新高地。 中国科学院宁波材料技术与工程研究所与地方和企业开展了多元合作,创立了一套行之有效的合作模式。初步打通成果转化通道。目前,与国内600多家企业和全球60多个知名机构开展了广泛合作,实现了金刚石、大豆胶、石墨烯等30余项重大科技成果产业化。
专知会员服务
131+阅读 · 2020年7月10日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
深度学习可解释性研究进展
专知会员服务
100+阅读 · 2020年6月26日
大数据安全技术研究进展
专知会员服务
94+阅读 · 2020年5月2日
【人大】大规模知识图谱补全技术的研究进展
专知会员服务
87+阅读 · 2020年5月2日
基于视觉的三维重建关键技术研究综述
专知会员服务
164+阅读 · 2020年5月1日
基于深度学习的多标签生成研究进展
专知会员服务
143+阅读 · 2020年4月25日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
37+阅读 · 2020年2月27日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
123+阅读 · 2019年10月10日
【论文笔记】图卷积的解释性技术
专知
18+阅读 · 2019年9月28日
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
Nature 一周论文导读 | 2019 年 5 月 30 日
科研圈
15+阅读 · 2019年6月9日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
Nature 一周论文导读 | 2019 年 2 月 14 日
科研圈
7+阅读 · 2019年2月24日
海洋论坛丨水声目标识别技术现状与发展
无人机
26+阅读 · 2018年12月17日
微表情检测和识别的研究进展与趋势
中国计算机学会
15+阅读 · 2018年3月23日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
【知识图谱】医学知识图谱构建技术与研究进展
产业智能官
44+阅读 · 2017年11月16日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
Deep Reinforcement Learning: An Overview
Arxiv
17+阅读 · 2018年11月26日
Arxiv
4+阅读 · 2018年4月10日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
专知会员服务
131+阅读 · 2020年7月10日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
深度学习可解释性研究进展
专知会员服务
100+阅读 · 2020年6月26日
大数据安全技术研究进展
专知会员服务
94+阅读 · 2020年5月2日
【人大】大规模知识图谱补全技术的研究进展
专知会员服务
87+阅读 · 2020年5月2日
基于视觉的三维重建关键技术研究综述
专知会员服务
164+阅读 · 2020年5月1日
基于深度学习的多标签生成研究进展
专知会员服务
143+阅读 · 2020年4月25日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
37+阅读 · 2020年2月27日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
123+阅读 · 2019年10月10日
相关资讯
【论文笔记】图卷积的解释性技术
专知
18+阅读 · 2019年9月28日
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
Nature 一周论文导读 | 2019 年 5 月 30 日
科研圈
15+阅读 · 2019年6月9日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
Nature 一周论文导读 | 2019 年 2 月 14 日
科研圈
7+阅读 · 2019年2月24日
海洋论坛丨水声目标识别技术现状与发展
无人机
26+阅读 · 2018年12月17日
微表情检测和识别的研究进展与趋势
中国计算机学会
15+阅读 · 2018年3月23日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
【知识图谱】医学知识图谱构建技术与研究进展
产业智能官
44+阅读 · 2017年11月16日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
Top
微信扫码咨询专知VIP会员