报告题目:问答系统

报告摘要:本次报告将覆盖多种不同类型的问答系统和方法:首先,介绍基于表格的问答系统,包括面向表格的检索、语义解析、问题生成以及如何从单轮问答扩展到多轮问答。然后,介绍基于知识图谱的问答系统,并将重点放在对话式多轮问答,包括多轮语义解析框架以及如何融合检索模型和元学习。接下来,介绍基于图片的问答系统,并将重点放在如何将语义解析方法融合到图片问答系统中。最后,介绍基于文本的问答系统。这里我们将围绕预训练模型进行说明。本次报告的最后,将和大家讨论与问答相关的未来(可能)研究课题和方向。

邀请嘉宾: 唐都钰,博士,微软亚洲研究院自然语言计算组研究员。从事自动问答、语义理解等自然语言处理研究,多项研究成果已经转化到微软必应搜索中。

段楠,博士,微软亚洲研究院自然语言计算组主管研究员,从事包括问答、对话、语义理解和搜索等在内的自然语言处理研究。《智能问答》(高教出版社)作者,其多项研究成果成功用于包括必应搜索、Cortana语音助手和微软小冰等在内的微软人工智能产品。

成为VIP会员查看完整内容
CIPS_SSATT_2019_问答系统_唐都钰_段楠.pdf
50

相关内容

唐都钰,博士,微软亚洲研究院自然语言计算组研究员。从事自动问答、语义理解等自然语言处理研究,多项研究成果已经转化到微软必应搜索中。
【CCL 2019】2019信息检索趋势,山东大学教授任昭春博士
专知会员服务
29+阅读 · 2019年11月12日
报告 | 腾讯知文,从0到1打造下一代智能问答引擎【CCF-GAIR】
机器学习算法与Python学习
13+阅读 · 2018年7月4日
报名 | 知识图谱前沿技术课程(苏州大学站)
PaperWeekly
12+阅读 · 2017年11月27日
ADL报名 | 从自然语言理解到问答机器人
中国计算机学会
5+阅读 · 2017年10月17日
自然语言处理在人机对话中的应用
京东大数据
8+阅读 · 2017年8月11日
报名 | 知识图谱前沿技术课程(暨学术交流)
PaperWeekly
17+阅读 · 2017年7月10日
Arxiv
8+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年11月1日
Knowledge Based Machine Reading Comprehension
Arxiv
4+阅读 · 2018年9月12日
CoQA: A Conversational Question Answering Challenge
Arxiv
7+阅读 · 2018年8月21日
Arxiv
8+阅读 · 2018年1月12日
VIP会员
相关VIP内容
【CCL 2019】2019信息检索趋势,山东大学教授任昭春博士
专知会员服务
29+阅读 · 2019年11月12日
相关论文
微信扫码咨询专知VIP会员