VIP内容

如今,企业创建的机器学习(ML)模型中,有一半以上都没有投入生产。主要是面临技术上的操作挑战和障碍,还有组织上的。不管怎样,最基本的是,不在生产中的模型不能提供业务影响。

这本书介绍了MLOps的关键概念,帮助数据科学家和应用工程师不仅可以操作ML模型来驱动真正的业务变化,而且还可以随着时间的推移维护和改进这些模型。通过基于世界各地众多MLOps应用的经验教训,九位机器学习专家对模型生命周期的五个步骤——构建、预生产、部署、监控和治理——提供了深刻见解,揭示了如何将稳健的MLOps过程贯穿始终。

https://www.oreilly.com/library/view/introducing-mlops/9781492083283/

这本书帮助你:

通过减少整个ML管道和工作流程的冲突,实现数据科学价值 通过再训练、定期调整和完全重构来改进ML模型,以确保长期的准确性 设计MLOps的生命周期,使组织风险最小化,模型是公正的、公平的和可解释的 为管道部署和更复杂、不那么标准化的外部业务系统操作ML模型

成为VIP会员查看完整内容
0
45

最新论文

The emerging age of connected, digital world means that there are tons of data, distributed to various organizations and their databases. Since this data can be confidential in nature, it cannot always be openly shared in seek of artificial intelligence (AI) and machine learning (ML) solutions. Instead, we need integration mechanisms, analogous to integration patterns in information systems, to create multi-organization AI/ML systems. In this paper, we present two real-world cases. First, we study integration between two organizations in detail. Second, we address scaling of AI/ML to multi-organization context. The setup we assume is that of continuous deployment, often referred to DevOps in software development. When also ML components are deployed in a similar fashion, term MLOps is used. Towards the end of the paper, we list the main observations and draw some final conclusions. Finally, we propose some directions for future work.

0
0
下载
预览
Top