梯度下降法算法用梯度乘以一个称为学习速率(有时也称为步长)的标量,以确定下一个点的位置。如果学习速率太小,则会使收敛过慢,如果学习速率太大,则会导致代价函数振荡。

最新论文

Though data augmentation has rapidly emerged as a key tool for optimization in modern machine learning, a clear picture of how augmentation schedules affect optimization and interact with optimization hyperparameters such as learning rate is nascent. In the spirit of classical convex optimization and recent work on implicit bias, the present work analyzes the effect of augmentation on optimization in the simple convex setting of linear regression with MSE loss. We find joint schedules for learning rate and data augmentation scheme under which augmented gradient descent provably converges and characterize the resulting minimum. Our results apply to arbitrary augmentation schemes, revealing complex interactions between learning rates and augmentations even in the convex setting. Our approach interprets augmented (S)GD as a stochastic optimization method for a time-varying sequence of proxy losses. This gives a unified way to analyze learning rate, batch size, and augmentations ranging from additive noise to random projections. From this perspective, our results, which also give rates of convergence, can be viewed as Monro-Robbins type conditions for augmented (S)GD.

0
0
下载
预览
父主题
Top