The problems that exist in implementing a sampling design for socio-economic surveys in remote areas in Indonesia are high cost of the survey, low response rate, and less accurate. Therefore, the sampling design needs to be developed, one of which is to improve the efficiency of the stratification procedure. Stratification of census block in remote areas can be developed by combining the strata of welfare concentration and the strata of geographic difficulty by simulating the various alternatives number of strata and the various alternatives sample allocation. The strata of welfare concentration and the strata of geographic difficulty are constructed by Polychoric Principal Component Analysis. The strata of welfare concentration aim to improve statistical efficiency, while the strata of geographic difficulty are used to improve cost efficiency. The estimation procedure is performed at the domain level and population level. The simulation study focus on Papua Province by using the 2010 Population Census data and the 2011 Village Potency data. Some sampling scenarios can be categorized into four quadrants, the first quadrant with small sampling variance and low cost, the second quadrant with big sampling variance and low cost, the third quadrant with big sampling variance and high cost, and the fourth quadrant with small sampling variance and high cost. Based on these simulation results, several alternative scenarios of efficient stratification with small sampling variance and low cost of the survey are obtained.


翻译:在印度尼西亚偏远地区实施社会经济调查抽样设计方面存在的问题是:调查费用高、答复率低、准确度低;因此,需要制定抽样设计,其中之一是提高分层程序的效率;在偏远地区划分普查区块的分层,可以通过模拟各阶层的替代人数和各种替代抽样分配办法,将福利集中层和地理困难层结合起来;福利集中层和地理困难层由多组主要构成部分分析构建;福利集中层的目的是提高统计效率,而地理困难层用于提高成本效率;估算程序在域一级和人口一级进行;模拟研究的重点是巴布亚省,采用2010年人口普查数据和2011年乡村能力数据;一些抽样假设可分为四个四分层,第一个四端为取样差异小和成本低的四端,第二个四端为抽样差异大和成本低;第三个四方位为大采样差异和成本高;第四方位为抽样差异和成本低的第四方位;这些抽样调查以2010年人口普查数据和2011年乡村能力强的数据为中心;根据若干次抽样和成本低的替代情况进行了模拟。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月7日
Arxiv
0+阅读 · 2023年2月3日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员