Foundation models (FMs) excel in zero-shot tasks but benefit from task-specific adaptation. However, privacy concerns prevent data sharing among multiple data owners, and proprietary restrictions prevent the learning service provider (LSP) from sharing the FM. In this work, we propose BlindFed, a framework enabling collaborative FM adaptation while protecting both parties: data owners do not access the FM or each other's data, and the LSP does not see sensitive task data. BlindFed relies on fully homomorphic encryption (FHE) and consists of three key innovations: (i) FHE-friendly architectural modifications via polynomial approximations and low-rank adapters, (ii) a two-stage split learning approach combining offline knowledge distillation and online encrypted inference for adapter training without backpropagation through the FM, and (iii) a privacy-boosting scheme using sample permutations and stochastic block sampling to mitigate model extraction attacks. Empirical results on four image classification datasets demonstrate the practical feasibility of the BlindFed framework, albeit at a high communication cost and large computational complexity for the LSP.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员