Ensuring human safety in collaborative robotics can compromise efficiency because traditional safety measures increase robot cycle time when human interaction is frequent. This paper proposes a safety-aware approach to mitigate efficiency losses without assuming prior knowledge of safety logic. Using a deep-learning model, the robot learns the relationship between system state and safety-induced speed reductions based on execution data. Our framework does not explicitly predict human motions but directly models the interaction effects on robot speed, simplifying implementation and enhancing generalizability to different safety logics. At runtime, the learned model optimizes task selection to minimize cycle time while adhering to safety requirements. Experiments on a pick-and-packaging scenario demonstrated significant reductions in cycle times.
翻译:在协作机器人系统中确保人员安全可能会降低效率,因为当人机交互频繁时,传统安全措施会增加机器人作业周期时间。本文提出一种安全感知方法,在不预设安全逻辑先验知识的前提下缓解效率损失。通过深度学习模型,机器人能够基于执行数据学习系统状态与安全机制引发的速度降低之间的关联关系。本框架不显式预测人体运动,而是直接建模交互对机器人速度的影响,从而简化实现过程并增强对不同安全逻辑的泛化能力。在运行时,学习到的模型通过优化任务选择来最小化周期时间,同时满足安全约束。在分拣包装场景中的实验表明,该方法能显著缩短作业周期时间。