This study aims to reveal what kind of topics emerged in the biomedical domain by retrospectively analyzing newly added MeSH (Medical Subject Headings) terms from 2001 to 2010 and how they have been used for indexing since their inclusion in the thesaurus. The goal is to investigate if the future trend of a new topic depends on what kind of topic it is without relying on external indicators such as growth, citation patterns, or word co-occurrences. This topic perspective complements the traditional publication perspective in studying emerging topics. Results show that topic characteristics, including topic category, clinical significance, and if a topic has any narrower terms at the time of inclusion, influence future popularity of a new MeSH. Four emergence trend patterns are identified, including emerged and sustained, emerged not sustained, emerged and fluctuated, and not yet emerged. Predictive models using topic characteristics for emerging topic prediction show promise. This suggests that the characteristics of topics and domain should be considered when predicting future emergence of research topics. This study bridges a gap in emerging topic prediction by offering a topic perspective and advocates for considering topic and domain characteristics as well as economic, medical, and environmental impact when studying emerging topics in the biomedical domain.


翻译:这项研究的目的是通过追溯分析2001年至2010年新增加的MesH(医学主题标题)术语,揭示生物医学领域出现何种专题,以及自纳入术语汇编以来,这些专题如何被用于编制索引,目的是调查新专题的未来趋势是否取决于专题的未来趋势,而不依赖诸如增长、引证模式或“共发”字词等外部指标,从而了解生物医学领域出现了何种专题。这个专题视角补充了研究新专题时的传统出版视角。结果显示,专题特征,包括专题类别、临床意义,以及一个专题在纳入时是否影响较窄的术语,影响新的MesH的未来受欢迎程度。确定了四种新出现的趋势模式,包括出现和持续出现、出现、不持续、出现和波动,尚未出现。在研究生物医学领域新兴专题时,利用专题特点的预测模型显示了前景。这表明,在预测未来出现研究专题时,应当考虑专题和领域的特点。这项研究通过提供专题视角和倡导者来审议专题和域特性以及经济、医学和环境影响,弥补新出现专题预测中的空白。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Arxiv
1+阅读 · 2021年11月5日
Arxiv
29+阅读 · 2021年11月2日
Arxiv
10+阅读 · 2020年11月26日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
Top
微信扫码咨询专知VIP会员