In this paper we consider the limiting case of neural networks (NNs) architectures when the number of neurons in each hidden layer and the number of hidden layers tend to infinity thus forming a continuum, and we derive approximation errors as a function of the number of neurons and/or hidden layers. Firstly, we consider the case of neural networks with a single hidden layer and we derive an integral infinite width neural representation that generalizes existing continuous neural networks (CNNs) representations. Then we extend this to deep residual CNNs that have a finite number of integral hidden layers and residual connections. Secondly, we revisit the relation between neural ODEs and deep residual NNs and we formalize approximation errors via discretization techniques. Then, we merge these two approaches into a unified homogeneous representation of NNs as a Distributed Parameter neural Network (DiPaNet) and we show that most of the existing finite and infinite-dimensional NNs architectures are related via homogenization/discretization with the DiPaNet representation. Our approach is purely deterministic and applies to general, uniformly continuous matrix weight functions. Relations with neural fields and other neural integro-differential equations are discussed along with further possible generalizations and applications of the DiPaNet framework.


翻译:本文研究了神经网络架构在极限情况下的性质,即当每个隐藏层的神经元数量和隐藏层数量趋于无穷大时形成连续统的情形,并推导了近似误差与神经元数量和/或隐藏层数量的函数关系。首先,我们考虑单隐藏层神经网络的情况,推导出了一种积分形式的无限宽度神经表示,该表示推广了现有的连续神经网络表示。随后,我们将此推广至具有有限个积分隐藏层和残差连接的深度残差连续神经网络。其次,我们重新审视了神经常微分方程与深度残差神经网络之间的关系,并通过离散化技术形式化地描述了近似误差。接着,我们将这两种方法融合为一种统一的神经网络齐次表示——分布式参数神经网络,并证明大多数现有的有限维与无限维神经网络架构均可通过DiPaNet表示的齐次化/离散化过程相互关联。我们的方法完全是确定性的,适用于一般的一致连续矩阵权重函数。文中还讨论了与神经场及其他神经积分微分方程的联系,并对DiPaNet框架的进一步推广与应用前景进行了探讨。

0
下载
关闭预览

相关内容

Top
微信扫码咨询专知VIP会员