Spiking Neural Networks (SNNs) are the third generation of neural networks. They have gained widespread attention in object detection due to their low power consumption and biological interpretability. However, existing SNN-based object detection methods suffer from local firing saturation, where adjacent neurons concurrently reach maximum firing rates, especially in object-centric regions. This abnormal neuron firing pattern reduces the feature discrimination capability and detection accuracy, while also increasing the firing rates that prevent SNNs from achieving their potential energy efficiency. To address this problem, we propose SpikeDet, a novel spiking object detector that optimizes firing patterns for accurate and energy-efficient detection. Specifically, we design a spiking backbone network, MDSNet, which effectively adjusts the membrane synaptic input distribution at each layer, achieving better neuron firing patterns during spiking feature extraction. For the neck, to better utilize and preserve these high-quality backbone features, we introduce the Spiking Multi-direction Fusion Module (SMFM), which realizes multi-direction fusion of spiking features, enhancing the multi-scale detection capability of the model. Furthermore, we propose the Local Firing Saturation Index (LFSI) to quantitatively measure local firing saturation. Experimental results validate the effectiveness of our method, with SpikeDet achieving superior performance. On the COCO 2017 dataset, it achieves 52.2% AP, outperforming previous SNN-based methods by 3.3% AP while requiring only half the power consumption. On object detection sub-tasks, including event-based GEN1, underwater URPC 2019, low-light ExDARK, and dense scene CrowdHuman datasets, SpikeDet also achieves the best performance.
翻译:脉冲神经网络(SNNs)作为第三代神经网络,凭借其低功耗和生物可解释性,在目标检测领域受到广泛关注。然而,现有的基于SNN的目标检测方法存在局部发放饱和问题,即相邻神经元(尤其是在目标中心区域)同时达到最大发放率。这种异常的神经元发放模式降低了特征判别能力与检测精度,同时增加的发放率也阻碍了SNN实现其潜在的高能效优势。为解决此问题,我们提出了一种新颖的脉冲目标检测器SpikeDet,通过优化发放模式以实现高精度与高能效检测。具体而言,我们设计了一个脉冲骨干网络MDSNet,该网络能有效调整各层的膜突触输入分布,从而在脉冲特征提取过程中获得更优的神经元发放模式。在颈部网络中,为了更好地利用并保持这些高质量的骨干特征,我们引入了脉冲多向融合模块(SMFM),实现了脉冲特征的多向融合,增强了模型的多尺度检测能力。此外,我们提出了局部发放饱和指数(LFSI)以定量衡量局部发放饱和程度。实验结果验证了本方法的有效性,SpikeDet取得了卓越的性能。在COCO 2017数据集上,其实现了52.2%的AP,较先前基于SNN的方法提升了3.3% AP,同时功耗仅为其一半。在包括基于事件的GEN1、水下URPC 2019、低光照ExDARK以及密集场景CrowdHuman等目标检测子任务数据集上,SpikeDet同样取得了最佳性能。