Multisource domain adaptation (MDA) aims to use multiple source datasets with available labels to infer labels on a target dataset without available labels for target supervision. Prior works on MDA in the literature is ad-hoc as the pretraining of source models is either based on weight sharing or uses independently trained models. This work proposes a Bayesian framework for pretraining in MDA by considering that the distributions of different source domains are typically similar. The Hierarchical Bayesian Framework uses similarity between the different source data distributions to optimize the pretraining for MDA. Experiments using the proposed Bayesian framework for MDA show that our framework improves accuracy on recognition tasks for a large benchmark dataset. Performance comparison with state-of-the-art MDA methods on the challenging problem of human action recognition in multi-domain benchmark Daily-DA RGB video shows the proposed Bayesian Framework offers a 17.29% improvement in accuracy when compared to the state-of-the-art methods in the literature.
翻译:多源域自适应(MDA)旨在利用多个带有可用标签的源数据集,对无可用标签的目标数据集进行标签推断。现有文献中的MDA方法多为临时性方案,其源模型预训练要么基于权重共享,要么使用独立训练的模型。本文提出一种用于MDA预训练的贝叶斯框架,其核心思想在于不同源域的分布通常具有相似性。该层次贝叶斯框架通过利用不同源数据分布之间的相似性来优化MDA的预训练过程。采用所提贝叶斯框架进行的MDA实验表明,在大型基准数据集上的识别任务中,本框架显著提升了准确率。在多域基准数据集Daily-DA RGB视频中极具挑战性的人类动作识别任务上,与现有最先进的MDA方法进行性能对比显示:所提出的贝叶斯框架相较于文献中的前沿方法,在准确率上实现了17.29%的提升。