We consider incomplete observations of stochastic processes governing the spread of infectious diseases through finite populations by way of contact. We propose a flexible semiparametric modeling framework with at least three advantages. First, it enables researchers to study the structure of a population contact network and its impact on the spread of infectious diseases. Second, it can accommodate short- and long-tailed degree distributions and detect potential superspreaders, who represent an important public health concern. Third, it addresses the important issue of incomplete data. Starting from first principles, we show when the incomplete-data generating process is ignorable for the purpose of Bayesian inference for the parameters of the population model. We demonstrate the semiparametric modeling framework by simulations and an application to the partially observed MERS epidemic in South Korea in 2015. We conclude with an extended discussion of open questions and directions for future research.
翻译:我们考虑对通过接触方式控制传染病通过有限人口传播的随机过程的不完整观察,我们提出一个灵活的半参数模型框架,至少有三个优点。首先,它使研究人员能够研究人口联系网络的结构及其对传染病传播的影响。第二,它能够容纳短期和长尾分布,并探测潜在的超传播者,他们代表着一个重要的公共卫生关切。第三,它涉及数据不完整这一重要问题。从最初的原则开始,我们显示,为巴伊西亚人推断人口模型参数的目的,不完全的生成数据的过程是可忽略的。我们通过模拟和2015年在韩国部分观测到的MERS流行病的应用,展示了半参数模型框架。我们最后对未来研究的开放问题和方向进行了广泛的讨论。