We show that when a Brownian bridge is physically constrained to satisfy a canonical condition, its time evolution exactly coincides with an m-geodesic on the statistical manifold of Gaussian distributions. This identification provides a direct physical realization of a geometric concept in information geometry. It implies that purely random processes evolve along informationally straight trajectories, analogous to geodesics in general relativity. Our findings suggest that the asymmetry of informational ``distance" (divergence) plays a fundamental physical role, offering a concrete step toward an equivalence principle for information.
翻译:我们证明,当一个布朗桥被物理约束以满足一个正则条件时,其时间演化恰好与高斯分布统计流形上的m-测地线重合。这一对应关系为信息几何中的几何概念提供了直接的物理实现。它表明纯随机过程沿着信息意义上的直线轨迹演化,类似于广义相对论中的测地线。我们的发现表明,信息“距离”(散度)的非对称性起着根本的物理作用,为信息的等效原理提供了具体的一步。