This paper clarifies how and why structural demand models (Berry and Haile, 2014, 2024) predict unit-level counterfactual outcomes. We do so by casting structural assumptions equivalently as restrictions on the joint distribution of potential outcomes. Our reformulation highlights a counterfactual homogeneity assumption underlying structural demand models: The relationship between counterfactual outcomes is assumed to be identical across markets. This assumption is strong, but cannot be relaxed without sacrificing identification of market-level counterfactuals. Absent this assumption, we can interpret model-based predictions as extrapolations from certain causally identified average treatment effects. This reinterpretation provides a conceptual bridge between structural modeling and causal inference.


翻译:本文阐明了结构需求模型(Berry and Haile, 2014, 2024)如何以及为何能够预测个体层面的反事实结果。我们通过将结构假设等价地表述为对潜在结果联合分布的限制来实现这一目标。我们的重构揭示了结构需求模型所基于的反事实同质性假设:反事实结果之间的关系被假定为在不同市场间是相同的。这一假设较强,但若放弃则无法保持市场层面反事实结果的可识别性。在没有该假设的情况下,我们可以将基于模型的预测解释为从某些因果识别的平均处理效应出发的外推。这一重新解读为结构建模与因果推断之间建立了概念桥梁。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员