In recent years, dynamic agent-based population models, which model every inhabitant of a country as a statistically representative agent, have been gaining in popularity for decision support. This is mainly due to their high degree of flexibility with respect to their area of application. GEPOC ABM is one of these models. Developed in 2015, it is now a well-established decision support tool and has been successfully applied for a wide range of population-level research questions ranging from health-care to logistics. At least in part, this success is attributable to continuous improvement and development of new methods. While some of these are very application- or implementation-specific, others can be well transferred to other population models. The focus of the present work lies on the presentation of three selected transferable innovations. We illustrate an innovative time-update concept for the individual agents, a co-simulation-inspired simulation strategy, and a strategy for accurate model parametrisation. We describe these methods in a reproducible manner, explain their advantages and provide ideas on how they can be transferred to other population models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Top
微信扫码咨询专知VIP会员