In this paper we consider the limiting case of neural networks (NNs) architectures when the number of neurons in each hidden layer and the number of hidden layers tend to infinity thus forming a continuum, and we derive approximation errors as a function of the number of neurons and/or hidden layers. Firstly, we consider the case of neural networks with a single hidden layer and we derive an integral infinite width neural representation that generalizes existing continuous neural networks (CNNs) representations. Then we extend this to deep residual CNNs that have a finite number of integral hidden layers and residual connections. Secondly, we revisit the relation between neural ODEs and deep residual NNs and we formalize approximation errors via discretization techniques. Then, we merge these two approaches into a unified homogeneous representation of NNs as a Distributed Parameter neural Network (DiPaNet) and we show that most of the existing finite and infinite-dimensional NNs architectures are related via homogeneization/discretization with the DiPaNet representation. Our approach is purely deterministic and applies to general, uniformly continuous matrix weight functions. Differences and similarities with neural fields are discussed along with further possible generalizations and applications of the DiPaNet framework.
翻译:本文研究了神经网络架构在极限情况下的性质,即当每个隐藏层的神经元数量和隐藏层数量趋于无穷大从而形成连续体时,我们推导了近似误差与神经元数量和/或隐藏层数量的函数关系。首先,我们考虑具有单个隐藏层的神经网络,推导出了一种积分无限宽度神经表示,该表示推广了现有的连续神经网络表示。随后,我们将此推广至具有有限个积分隐藏层和残差连接的深度残差连续神经网络。其次,我们重新审视了神经常微分方程与深度残差神经网络之间的关系,并通过离散化技术形式化地描述了近似误差。接着,我们将这两种方法融合为一种统一的神经网络齐次表示,即分布式参数神经网络,并证明了大多数现有的有限维和无限维神经网络架构均可通过齐次化/离散化与分布式参数神经网络表示相关联。我们的方法是完全确定性的,适用于一般的一致连续矩阵权重函数。文中讨论了与神经场理论的异同,并探讨了分布式参数神经网络框架进一步可能的推广与应用。