Autonomous laboratories typically rely on data-driven decision-making, occasionally with human-in-the-loop oversight to inject domain expertise. Fully leveraging AI agents, however, requires tightly coupled, collaborative workflows spanning hypothesis generation, experimental planning, execution, and interpretation. To address this, we develop and deploy a human-AI collaborative (HAIC) workflow that integrates large language models for hypothesis generation and analysis, with collaborative policy updates driving autonomous pulsed laser deposition (PLD) experiments for remote epitaxy of BaTiO$_3$/graphene. HAIC accelerated the hypothesis formation and experimental design and efficiently mapped the growth space to graphene-damage. In situ Raman spectroscopy reveals that chemistry drives degradation while the highest energy plume components seed defects, identifying a low-O$_2$ pressure low-temperature synthesis window that preserves graphene but is incompatible with optimal BaTiO$_3$ growth. Thus, we show a two-step Ar/O$_2$ deposition is required to exfoliate ferroelectric BaTiO$_3$ while maintaining a monolayer graphene interlayer. HAIC stages human insight with AI reasoning between autonomous batches to drive rapid scientific progress, providing an evolution to many existing human-in-the-loop autonomous workflows.


翻译:自主实验室通常依赖于数据驱动的决策,偶尔通过人在回路监督来注入领域专业知识。然而,要充分利用AI代理,需要紧密耦合、协同的工作流程,涵盖假设生成、实验规划、执行和解释。为此,我们开发并部署了一种人机协同工作流程,该流程整合了用于假设生成和分析的大语言模型,并通过协同策略更新驱动自主脉冲激光沉积实验,以实现BaTiO$_3$/石墨烯的远程外延。HAIC加速了假设形成和实验设计,并高效地绘制了生长空间与石墨烯损伤的映射关系。原位拉曼光谱分析表明,化学过程驱动降解,而最高能量羽流组分引发缺陷,从而确定了一个低氧压、低温的合成窗口,该窗口能保护石墨烯但与最优BaTiO$_3$生长不兼容。因此,我们证明需要采用两步Ar/O$_2$沉积法,以剥离铁电性BaTiO$_3$同时保持单层石墨烯中间层。HAIC在自主批次之间将人类洞察与AI推理分阶段结合,以推动快速科学进展,为许多现有的人在回路自主工作流程提供了演进方向。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
Top
微信扫码咨询专知VIP会员