The paper describes the MetroPT data set, an outcome of a eXplainable Predictive Maintenance (XPM) project with an urban metro public transportation service in Porto, Portugal. The data was collected in 2022 that aimed to evaluate machine learning methods for online anomaly detection and failure prediction. By capturing several analogic sensor signals (pressure, temperature, current consumption), digital signals (control signals, discrete signals), and GPS information (latitude, longitude, and speed), we provide a dataset that can be easily used to evaluate online machine learning methods. This dataset contains some interesting characteristics and can be a good benchmark for predictive maintenance models.
翻译:论文描述了MetroPT数据集,这是葡萄牙波尔图市公共交通服务城市地铁运输服务的一个电子可扩展的可预测性维护项目的成果,该数据集是2022年收集的,旨在评价用于在线异常探测和故障预测的机器学习方法。通过捕捉若干模拟传感器信号(压力、温度、当前消耗量)、数字信号(控制信号、离散信号)和全球定位系统信息(纬度、经度和速度),我们提供了一个数据集,可以很容易地用来评价在线机器学习方法。该数据集包含一些有趣的特征,可以成为预测维护模型的良好基准。